• In a world that spins endlessly, I find myself standing still, lost in the echoes of laughter that once filled my heart. The warmth of companionship feels like a distant memory, replaced by the cold reality of solitude. Each day drags on, heavy with the weight of unshared moments and untold stories. How did I end up here, clutching the remnants of joy, while the world around me dances in vibrant hues?

    I often wonder if anyone notices the silent battles I fight within. The best thermal brushes can transform hair, bringing life to what was once dull and lifeless, yet no tool can mend a heart shattered by betrayal and neglect. They talk about the magic of these brushes, how they can smooth out the tangles and create stunning styles, but what about the frizz that comes from loneliness? The ache that lingers long after the laughter fades?

    Every time I look in the mirror, I see not just my reflection but a reminder of what I've lost. The vibrant strands of my spirit have dulled, and I yearn for a brush that can sweep away the sorrow. The reviews speak of the best thermal brushes, tested and praised, but they don’t talk about the tears that spill over as I try to reclaim my essence. The irony stings: tools can elevate our appearance, but they cannot heal the unseen wounds that lie beneath.

    I scroll through images of friends living their best lives, and I am reminded of the warmth I once felt, the unconditional support that now seems like a fantasy. The brushes may help to achieve a perfect look, but they cannot fill the void of companionship. The ache in my chest serves as a constant reminder that no amount of styling can bring back the laughter shared, the moments cherished, or the love lost.

    As I stand in front of the mirror, I wish for a transformation that goes beyond the surface. I wish for a return to happiness, for the touch of a hand that understands the depths of my sorrow. The best thermal brush may create beauty, but I seek something deeper—a connection, a reason to smile again. Until then, I will continue to wander through this life, searching for solace in the shadows.

    #Loneliness #Heartbreak #EmotionalJourney #Healing #FindingSolace
    In a world that spins endlessly, I find myself standing still, lost in the echoes of laughter that once filled my heart. The warmth of companionship feels like a distant memory, replaced by the cold reality of solitude. Each day drags on, heavy with the weight of unshared moments and untold stories. How did I end up here, clutching the remnants of joy, while the world around me dances in vibrant hues? I often wonder if anyone notices the silent battles I fight within. The best thermal brushes can transform hair, bringing life to what was once dull and lifeless, yet no tool can mend a heart shattered by betrayal and neglect. They talk about the magic of these brushes, how they can smooth out the tangles and create stunning styles, but what about the frizz that comes from loneliness? The ache that lingers long after the laughter fades? Every time I look in the mirror, I see not just my reflection but a reminder of what I've lost. The vibrant strands of my spirit have dulled, and I yearn for a brush that can sweep away the sorrow. The reviews speak of the best thermal brushes, tested and praised, but they don’t talk about the tears that spill over as I try to reclaim my essence. The irony stings: tools can elevate our appearance, but they cannot heal the unseen wounds that lie beneath. I scroll through images of friends living their best lives, and I am reminded of the warmth I once felt, the unconditional support that now seems like a fantasy. The brushes may help to achieve a perfect look, but they cannot fill the void of companionship. The ache in my chest serves as a constant reminder that no amount of styling can bring back the laughter shared, the moments cherished, or the love lost. As I stand in front of the mirror, I wish for a transformation that goes beyond the surface. I wish for a return to happiness, for the touch of a hand that understands the depths of my sorrow. The best thermal brush may create beauty, but I seek something deeper—a connection, a reason to smile again. Until then, I will continue to wander through this life, searching for solace in the shadows. #Loneliness #Heartbreak #EmotionalJourney #Healing #FindingSolace
    3 Best Thermal Brush, Tested and Reviewed by WIRED (2025)
    Curious about the best thermal brush? Here’s what they can and can’t do for your hair, and which ones are worth buying.
    Like
    Love
    Wow
    Sad
    Angry
    365
    1 Kommentare 0 Anteile
  • Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon

    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey.

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations.
    Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered.
    Frontiers: What inspired you to become a researcher?
    Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved.
    F: Can you tell us about the research you’re currently working on?
    BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation.
    Local boating the Amazon River. CREDIT: Beatriz Cosendey.
    F: Could you tell us about one of the legends surrounding anacondas?
    BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty.
    F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity?
    BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently.
    A giant anaconda is being measured. Credit: Pedro Calazans.
    F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play?
    BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?”
    For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste.
    One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey.
    Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey.
    We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals.
    F: Are there any common misconceptions about this area of research? How would you address them?
    BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data.
    However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework.
    To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society.
    The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey.
    F: What are some of the areas of research you’d like to see tackled in the years ahead?
    BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere.
    F: How has open science benefited the reach and impact of your research?
    BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups.
    The Q&A can also be read here.
    #qampampa #how #anacondas #chickens #locals
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here. #qampampa #how #anacondas #chickens #locals
    WWW.POPSCI.COM
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals (up to around 2–2.5 meters), while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is her [the anaconda’s] favorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh (to block smaller animals), and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here.
    Like
    Love
    Wow
    Sad
    Angry
    443
    2 Kommentare 0 Anteile
  • Scientists Detect Unusual Airborne Toxin in the United States for the First Time

    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock
    University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffinsin the Western Hemisphere.
    Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins.
    This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins, a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au.
    “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.”
    MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now.
    From Wastewater to Farmlands
    MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument.
    “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.”
    MCCPs little cousins, Short Chain Chlorinated Paraffins, are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment.
    “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.”
    Measurement of aerosols led to a new and surprising discovery
    Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs.
    Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer.
    Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts.
    “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.”
    Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au.
    DOI: 10.1021/acsenvironau.5c00038
    Never miss a breakthrough: Join the SciTechDaily newsletter.
    #scientists #detect #unusual #airborne #toxin
    Scientists Detect Unusual Airborne Toxin in the United States for the First Time
    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffinsin the Western Hemisphere. Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins. This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins, a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au. “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.” MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now. From Wastewater to Farmlands MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument. “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.” MCCPs little cousins, Short Chain Chlorinated Paraffins, are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment. “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.” Measurement of aerosols led to a new and surprising discovery Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs. Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer. Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts. “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.” Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au. DOI: 10.1021/acsenvironau.5c00038 Never miss a breakthrough: Join the SciTechDaily newsletter. #scientists #detect #unusual #airborne #toxin
    SCITECHDAILY.COM
    Scientists Detect Unusual Airborne Toxin in the United States for the First Time
    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffins (MCCPs) in the Western Hemisphere. Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins. This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins (MCCPs), a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au. “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.” MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now. From Wastewater to Farmlands MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument. “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.” MCCPs little cousins, Short Chain Chlorinated Paraffins (SCCPs), are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment. “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.” Measurement of aerosols led to a new and surprising discovery Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs. Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer. Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts. “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.” Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au. DOI: 10.1021/acsenvironau.5c00038 Never miss a breakthrough: Join the SciTechDaily newsletter.
    Like
    Love
    Wow
    Sad
    Angry
    411
    2 Kommentare 0 Anteile
  • Malicious PyPI Package Masquerades as Chimera Module to Steal AWS, CI/CD, and macOS Data

    Jun 16, 2025Ravie LakshmananMalware / DevOps

    Cybersecurity researchers have discovered a malicious package on the Python Package Indexrepository that's capable of harvesting sensitive developer-related information, such as credentials, configuration data, and environment variables, among others.
    The package, named chimera-sandbox-extensions, attracted 143 downloads and likely targets users of a service called Chimera Sandbox, which was released by Singaporean tech company Grab last August to facilitate "experimentation and development ofsolutions."
    The package masquerades as a helper module for Chimera Sandbox, but "aims to steal credentials and other sensitive information such as Jamf configuration, CI/CD environment variables, AWS tokens, and more," JFrog security researcher Guy Korolevski said in a report published last week.
    Once installed, it attempts to connect to an external domain whose domain name is generated using a domain generation algorithmin order to download and execute a next-stage payload.
    Specifically, the malware acquires from the domain an authentication token, which is then used to send a request to the same domain and retrieve the Python-based information stealer.

    The stealer malware is equipped to siphon a wide range of data from infected machines. This includes -

    JAMF receipts, which are records of software packages installed by Jamf Pro on managed computers
    Pod sandbox environment authentication tokens and git information
    CI/CD information from environment variables
    Zscaler host configuration
    Amazon Web Services account information and tokens
    Public IP address
    General platform, user, and host information

    The kind of data gathered by the malware shows that it's mainly geared towards corporate and cloud infrastructure. In addition, the extraction of JAMF receipts indicates that it's also capable of targeting Apple macOS systems.
    The collected information is sent via a POST request back to the same domain, after which the server assesses if the machine is a worthy target for further exploitation. However, JFrog said it was unable to obtain the payload at the time of analysis.
    "The targeted approach employed by this malware, along with the complexity of its multi-stage targeted payload, distinguishes it from the more generic open-source malware threats we have encountered thus far, highlighting the advancements that malicious packages have made recently," Jonathan Sar Shalom, director of threat research at JFrog Security Research team, said.

    "This new sophistication of malware underscores why development teams remain vigilant with updates—alongside proactive security research – to defend against emerging threats and maintain software integrity."
    The disclosure comes as SafeDep and Veracode detailed a number of malware-laced npm packages that are designed to execute remote code and download additional payloads. The packages in question are listed below -

    eslint-config-airbnb-compatts-runtime-compat-checksolders@mediawave/libAll the identified npm packages have since been taken down from npm, but not before they were downloaded hundreds of times from the package registry.
    SafeDep's analysis of eslint-config-airbnb-compat found that the JavaScript library has ts-runtime-compat-check listed as a dependency, which, in turn, contacts an external server defined in the former packageto retrieve and execute a Base64-encoded string. The exact nature of the payload is unknown.
    "It implements a multi-stage remote code execution attack using a transitive dependency to hide the malicious code," SafeDep researcher Kunal Singh said.
    Solders, on the other hand, has been found to incorporate a post-install script in its package.json, causing the malicious code to be automatically executed as soon as the package is installed.
    "At first glance, it's hard to believe that this is actually valid JavaScript," the Veracode Threat Research team said. "It looks like a seemingly random collection of Japanese symbols. It turns out that this particular obfuscation scheme uses the Unicode characters as variable names and a sophisticated chain of dynamic code generation to work."
    Decoding the script reveals an extra layer of obfuscation, unpacking which reveals its main function: Check if the compromised machine is Windows, and if so, run a PowerShell command to retrieve a next-stage payload from a remote server.
    This second-stage PowerShell script, also obscured, is designed to fetch a Windows batch script from another domainand configures a Windows Defender Antivirus exclusion list to avoid detection. The batch script then paves the way for the execution of a .NET DLL that reaches out to a PNG image hosted on ImgBB.
    "is grabbing the last two pixels from this image and then looping through some data contained elsewhere in it," Veracode said. "It ultimately builds up in memory YET ANOTHER .NET DLL."

    Furthermore, the DLL is equipped to create task scheduler entries and features the ability to bypass user account controlusing a combination of FodHelper.exe and programmatic identifiersto evade defenses and avoid triggering any security alerts to the user.
    The newly-downloaded DLL is Pulsar RAT, a "free, open-source Remote Administration Tool for Windows" and a variant of the Quasar RAT.
    "From a wall of Japanese characters to a RAT hidden within the pixels of a PNG file, the attacker went to extraordinary lengths to conceal their payload, nesting it a dozen layers deep to evade detection," Veracode said. "While the attacker's ultimate objective for deploying the Pulsar RAT remains unclear, the sheer complexity of this delivery mechanism is a powerful indicator of malicious intent."
    Crypto Malware in the Open-Source Supply Chain
    The findings also coincide with a report from Socket that identified credential stealers, cryptocurrency drainers, cryptojackers, and clippers as the main types of threats targeting the cryptocurrency and blockchain development ecosystem.

    Some of the examples of these packages include -

    express-dompurify and pumptoolforvolumeandcomment, which are capable of harvesting browser credentials and cryptocurrency wallet keys
    bs58js, which drains a victim's wallet and uses multi-hop transfers to obscure theft and frustrate forensic tracing.
    lsjglsjdv, asyncaiosignal, and raydium-sdk-liquidity-init, which functions as a clipper to monitor the system clipboard for cryptocurrency wallet strings and replace them with threat actor‑controlled addresses to reroute transactions to the attackers

    "As Web3 development converges with mainstream software engineering, the attack surface for blockchain-focused projects is expanding in both scale and complexity," Socket security researcher Kirill Boychenko said.
    "Financially motivated threat actors and state-sponsored groups are rapidly evolving their tactics to exploit systemic weaknesses in the software supply chain. These campaigns are iterative, persistent, and increasingly tailored to high-value targets."
    AI and Slopsquatting
    The rise of artificial intelligence-assisted coding, also called vibe coding, has unleashed another novel threat in the form of slopsquatting, where large language modelscan hallucinate non-existent but plausible package names that bad actors can weaponize to conduct supply chain attacks.
    Trend Micro, in a report last week, said it observed an unnamed advanced agent "confidently" cooking up a phantom Python package named starlette-reverse-proxy, only for the build process to crash with the error "module not found." However, should an adversary upload a package with the same name on the repository, it can have serious security consequences.

    Furthermore, the cybersecurity company noted that advanced coding agents and workflows such as Claude Code CLI, OpenAI Codex CLI, and Cursor AI with Model Context Protocol-backed validation can help reduce, but not completely eliminate, the risk of slopsquatting.
    "When agents hallucinate dependencies or install unverified packages, they create an opportunity for slopsquatting attacks, in which malicious actors pre-register those same hallucinated names on public registries," security researcher Sean Park said.
    "While reasoning-enhanced agents can reduce the rate of phantom suggestions by approximately half, they do not eliminate them entirely. Even the vibe-coding workflow augmented with live MCP validations achieves the lowest rates of slip-through, but still misses edge cases."

    Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.

    SHARE




    #malicious #pypi #package #masquerades #chimera
    Malicious PyPI Package Masquerades as Chimera Module to Steal AWS, CI/CD, and macOS Data
    Jun 16, 2025Ravie LakshmananMalware / DevOps Cybersecurity researchers have discovered a malicious package on the Python Package Indexrepository that's capable of harvesting sensitive developer-related information, such as credentials, configuration data, and environment variables, among others. The package, named chimera-sandbox-extensions, attracted 143 downloads and likely targets users of a service called Chimera Sandbox, which was released by Singaporean tech company Grab last August to facilitate "experimentation and development ofsolutions." The package masquerades as a helper module for Chimera Sandbox, but "aims to steal credentials and other sensitive information such as Jamf configuration, CI/CD environment variables, AWS tokens, and more," JFrog security researcher Guy Korolevski said in a report published last week. Once installed, it attempts to connect to an external domain whose domain name is generated using a domain generation algorithmin order to download and execute a next-stage payload. Specifically, the malware acquires from the domain an authentication token, which is then used to send a request to the same domain and retrieve the Python-based information stealer. The stealer malware is equipped to siphon a wide range of data from infected machines. This includes - JAMF receipts, which are records of software packages installed by Jamf Pro on managed computers Pod sandbox environment authentication tokens and git information CI/CD information from environment variables Zscaler host configuration Amazon Web Services account information and tokens Public IP address General platform, user, and host information The kind of data gathered by the malware shows that it's mainly geared towards corporate and cloud infrastructure. In addition, the extraction of JAMF receipts indicates that it's also capable of targeting Apple macOS systems. The collected information is sent via a POST request back to the same domain, after which the server assesses if the machine is a worthy target for further exploitation. However, JFrog said it was unable to obtain the payload at the time of analysis. "The targeted approach employed by this malware, along with the complexity of its multi-stage targeted payload, distinguishes it from the more generic open-source malware threats we have encountered thus far, highlighting the advancements that malicious packages have made recently," Jonathan Sar Shalom, director of threat research at JFrog Security Research team, said. "This new sophistication of malware underscores why development teams remain vigilant with updates—alongside proactive security research – to defend against emerging threats and maintain software integrity." The disclosure comes as SafeDep and Veracode detailed a number of malware-laced npm packages that are designed to execute remote code and download additional payloads. The packages in question are listed below - eslint-config-airbnb-compatts-runtime-compat-checksolders@mediawave/libAll the identified npm packages have since been taken down from npm, but not before they were downloaded hundreds of times from the package registry. SafeDep's analysis of eslint-config-airbnb-compat found that the JavaScript library has ts-runtime-compat-check listed as a dependency, which, in turn, contacts an external server defined in the former packageto retrieve and execute a Base64-encoded string. The exact nature of the payload is unknown. "It implements a multi-stage remote code execution attack using a transitive dependency to hide the malicious code," SafeDep researcher Kunal Singh said. Solders, on the other hand, has been found to incorporate a post-install script in its package.json, causing the malicious code to be automatically executed as soon as the package is installed. "At first glance, it's hard to believe that this is actually valid JavaScript," the Veracode Threat Research team said. "It looks like a seemingly random collection of Japanese symbols. It turns out that this particular obfuscation scheme uses the Unicode characters as variable names and a sophisticated chain of dynamic code generation to work." Decoding the script reveals an extra layer of obfuscation, unpacking which reveals its main function: Check if the compromised machine is Windows, and if so, run a PowerShell command to retrieve a next-stage payload from a remote server. This second-stage PowerShell script, also obscured, is designed to fetch a Windows batch script from another domainand configures a Windows Defender Antivirus exclusion list to avoid detection. The batch script then paves the way for the execution of a .NET DLL that reaches out to a PNG image hosted on ImgBB. "is grabbing the last two pixels from this image and then looping through some data contained elsewhere in it," Veracode said. "It ultimately builds up in memory YET ANOTHER .NET DLL." Furthermore, the DLL is equipped to create task scheduler entries and features the ability to bypass user account controlusing a combination of FodHelper.exe and programmatic identifiersto evade defenses and avoid triggering any security alerts to the user. The newly-downloaded DLL is Pulsar RAT, a "free, open-source Remote Administration Tool for Windows" and a variant of the Quasar RAT. "From a wall of Japanese characters to a RAT hidden within the pixels of a PNG file, the attacker went to extraordinary lengths to conceal their payload, nesting it a dozen layers deep to evade detection," Veracode said. "While the attacker's ultimate objective for deploying the Pulsar RAT remains unclear, the sheer complexity of this delivery mechanism is a powerful indicator of malicious intent." Crypto Malware in the Open-Source Supply Chain The findings also coincide with a report from Socket that identified credential stealers, cryptocurrency drainers, cryptojackers, and clippers as the main types of threats targeting the cryptocurrency and blockchain development ecosystem. Some of the examples of these packages include - express-dompurify and pumptoolforvolumeandcomment, which are capable of harvesting browser credentials and cryptocurrency wallet keys bs58js, which drains a victim's wallet and uses multi-hop transfers to obscure theft and frustrate forensic tracing. lsjglsjdv, asyncaiosignal, and raydium-sdk-liquidity-init, which functions as a clipper to monitor the system clipboard for cryptocurrency wallet strings and replace them with threat actor‑controlled addresses to reroute transactions to the attackers "As Web3 development converges with mainstream software engineering, the attack surface for blockchain-focused projects is expanding in both scale and complexity," Socket security researcher Kirill Boychenko said. "Financially motivated threat actors and state-sponsored groups are rapidly evolving their tactics to exploit systemic weaknesses in the software supply chain. These campaigns are iterative, persistent, and increasingly tailored to high-value targets." AI and Slopsquatting The rise of artificial intelligence-assisted coding, also called vibe coding, has unleashed another novel threat in the form of slopsquatting, where large language modelscan hallucinate non-existent but plausible package names that bad actors can weaponize to conduct supply chain attacks. Trend Micro, in a report last week, said it observed an unnamed advanced agent "confidently" cooking up a phantom Python package named starlette-reverse-proxy, only for the build process to crash with the error "module not found." However, should an adversary upload a package with the same name on the repository, it can have serious security consequences. Furthermore, the cybersecurity company noted that advanced coding agents and workflows such as Claude Code CLI, OpenAI Codex CLI, and Cursor AI with Model Context Protocol-backed validation can help reduce, but not completely eliminate, the risk of slopsquatting. "When agents hallucinate dependencies or install unverified packages, they create an opportunity for slopsquatting attacks, in which malicious actors pre-register those same hallucinated names on public registries," security researcher Sean Park said. "While reasoning-enhanced agents can reduce the rate of phantom suggestions by approximately half, they do not eliminate them entirely. Even the vibe-coding workflow augmented with live MCP validations achieves the lowest rates of slip-through, but still misses edge cases." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE     #malicious #pypi #package #masquerades #chimera
    THEHACKERNEWS.COM
    Malicious PyPI Package Masquerades as Chimera Module to Steal AWS, CI/CD, and macOS Data
    Jun 16, 2025Ravie LakshmananMalware / DevOps Cybersecurity researchers have discovered a malicious package on the Python Package Index (PyPI) repository that's capable of harvesting sensitive developer-related information, such as credentials, configuration data, and environment variables, among others. The package, named chimera-sandbox-extensions, attracted 143 downloads and likely targets users of a service called Chimera Sandbox, which was released by Singaporean tech company Grab last August to facilitate "experimentation and development of [machine learning] solutions." The package masquerades as a helper module for Chimera Sandbox, but "aims to steal credentials and other sensitive information such as Jamf configuration, CI/CD environment variables, AWS tokens, and more," JFrog security researcher Guy Korolevski said in a report published last week. Once installed, it attempts to connect to an external domain whose domain name is generated using a domain generation algorithm (DGA) in order to download and execute a next-stage payload. Specifically, the malware acquires from the domain an authentication token, which is then used to send a request to the same domain and retrieve the Python-based information stealer. The stealer malware is equipped to siphon a wide range of data from infected machines. This includes - JAMF receipts, which are records of software packages installed by Jamf Pro on managed computers Pod sandbox environment authentication tokens and git information CI/CD information from environment variables Zscaler host configuration Amazon Web Services account information and tokens Public IP address General platform, user, and host information The kind of data gathered by the malware shows that it's mainly geared towards corporate and cloud infrastructure. In addition, the extraction of JAMF receipts indicates that it's also capable of targeting Apple macOS systems. The collected information is sent via a POST request back to the same domain, after which the server assesses if the machine is a worthy target for further exploitation. However, JFrog said it was unable to obtain the payload at the time of analysis. "The targeted approach employed by this malware, along with the complexity of its multi-stage targeted payload, distinguishes it from the more generic open-source malware threats we have encountered thus far, highlighting the advancements that malicious packages have made recently," Jonathan Sar Shalom, director of threat research at JFrog Security Research team, said. "This new sophistication of malware underscores why development teams remain vigilant with updates—alongside proactive security research – to defend against emerging threats and maintain software integrity." The disclosure comes as SafeDep and Veracode detailed a number of malware-laced npm packages that are designed to execute remote code and download additional payloads. The packages in question are listed below - eslint-config-airbnb-compat (676 Downloads) ts-runtime-compat-check (1,588 Downloads) solders (983 Downloads) @mediawave/lib (386 Downloads) All the identified npm packages have since been taken down from npm, but not before they were downloaded hundreds of times from the package registry. SafeDep's analysis of eslint-config-airbnb-compat found that the JavaScript library has ts-runtime-compat-check listed as a dependency, which, in turn, contacts an external server defined in the former package ("proxy.eslint-proxy[.]site") to retrieve and execute a Base64-encoded string. The exact nature of the payload is unknown. "It implements a multi-stage remote code execution attack using a transitive dependency to hide the malicious code," SafeDep researcher Kunal Singh said. Solders, on the other hand, has been found to incorporate a post-install script in its package.json, causing the malicious code to be automatically executed as soon as the package is installed. "At first glance, it's hard to believe that this is actually valid JavaScript," the Veracode Threat Research team said. "It looks like a seemingly random collection of Japanese symbols. It turns out that this particular obfuscation scheme uses the Unicode characters as variable names and a sophisticated chain of dynamic code generation to work." Decoding the script reveals an extra layer of obfuscation, unpacking which reveals its main function: Check if the compromised machine is Windows, and if so, run a PowerShell command to retrieve a next-stage payload from a remote server ("firewall[.]tel"). This second-stage PowerShell script, also obscured, is designed to fetch a Windows batch script from another domain ("cdn.audiowave[.]org") and configures a Windows Defender Antivirus exclusion list to avoid detection. The batch script then paves the way for the execution of a .NET DLL that reaches out to a PNG image hosted on ImgBB ("i.ibb[.]co"). "[The DLL] is grabbing the last two pixels from this image and then looping through some data contained elsewhere in it," Veracode said. "It ultimately builds up in memory YET ANOTHER .NET DLL." Furthermore, the DLL is equipped to create task scheduler entries and features the ability to bypass user account control (UAC) using a combination of FodHelper.exe and programmatic identifiers (ProgIDs) to evade defenses and avoid triggering any security alerts to the user. The newly-downloaded DLL is Pulsar RAT, a "free, open-source Remote Administration Tool for Windows" and a variant of the Quasar RAT. "From a wall of Japanese characters to a RAT hidden within the pixels of a PNG file, the attacker went to extraordinary lengths to conceal their payload, nesting it a dozen layers deep to evade detection," Veracode said. "While the attacker's ultimate objective for deploying the Pulsar RAT remains unclear, the sheer complexity of this delivery mechanism is a powerful indicator of malicious intent." Crypto Malware in the Open-Source Supply Chain The findings also coincide with a report from Socket that identified credential stealers, cryptocurrency drainers, cryptojackers, and clippers as the main types of threats targeting the cryptocurrency and blockchain development ecosystem. Some of the examples of these packages include - express-dompurify and pumptoolforvolumeandcomment, which are capable of harvesting browser credentials and cryptocurrency wallet keys bs58js, which drains a victim's wallet and uses multi-hop transfers to obscure theft and frustrate forensic tracing. lsjglsjdv, asyncaiosignal, and raydium-sdk-liquidity-init, which functions as a clipper to monitor the system clipboard for cryptocurrency wallet strings and replace them with threat actor‑controlled addresses to reroute transactions to the attackers "As Web3 development converges with mainstream software engineering, the attack surface for blockchain-focused projects is expanding in both scale and complexity," Socket security researcher Kirill Boychenko said. "Financially motivated threat actors and state-sponsored groups are rapidly evolving their tactics to exploit systemic weaknesses in the software supply chain. These campaigns are iterative, persistent, and increasingly tailored to high-value targets." AI and Slopsquatting The rise of artificial intelligence (AI)-assisted coding, also called vibe coding, has unleashed another novel threat in the form of slopsquatting, where large language models (LLMs) can hallucinate non-existent but plausible package names that bad actors can weaponize to conduct supply chain attacks. Trend Micro, in a report last week, said it observed an unnamed advanced agent "confidently" cooking up a phantom Python package named starlette-reverse-proxy, only for the build process to crash with the error "module not found." However, should an adversary upload a package with the same name on the repository, it can have serious security consequences. Furthermore, the cybersecurity company noted that advanced coding agents and workflows such as Claude Code CLI, OpenAI Codex CLI, and Cursor AI with Model Context Protocol (MCP)-backed validation can help reduce, but not completely eliminate, the risk of slopsquatting. "When agents hallucinate dependencies or install unverified packages, they create an opportunity for slopsquatting attacks, in which malicious actors pre-register those same hallucinated names on public registries," security researcher Sean Park said. "While reasoning-enhanced agents can reduce the rate of phantom suggestions by approximately half, they do not eliminate them entirely. Even the vibe-coding workflow augmented with live MCP validations achieves the lowest rates of slip-through, but still misses edge cases." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE    
    Like
    Love
    Wow
    Sad
    Angry
    514
    2 Kommentare 0 Anteile
  • MedTech AI, hardware, and clinical application programmes

    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between billion and billion annually in productivity gains. Through GenAI adoption, an additional billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experiencebeing equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    #medtech #hardware #clinical #application #programmes
    MedTech AI, hardware, and clinical application programmes
    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between billion and billion annually in productivity gains. Through GenAI adoption, an additional billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experiencebeing equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here. #medtech #hardware #clinical #application #programmes
    WWW.ARTIFICIALINTELLIGENCE-NEWS.COM
    MedTech AI, hardware, and clinical application programmes
    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between $14 billion and $55 billion annually in productivity gains. Through GenAI adoption, an additional $50 billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experience (UX) being equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. (Image source: “IBM Achieves New Deep Learning Breakthrough” by IBM Research is licensed under CC BY-ND 2.0.)Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    0 Kommentare 0 Anteile
  • An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment

    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22.

    If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster.
    Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral.
    Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet.

    At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites.
    Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement.
    I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa.

    Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own.
    And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research.
    There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms. 

    We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover.
    Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint. #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro. (Douglas Spencer reviewed it for AN.) Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas (which we aspired to be a part of, like the pretentious students we were). Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two students (Flávio Império joined us a little later) still in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent:  […] this extraordinary revival […] the rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses of (any) state or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética [this is ethics]. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    0 Kommentare 0 Anteile
  • Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects

    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada.
    Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption.
    Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits.
    Figure 1: Preheating air for industrial buildings: 2,750 m2of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies
    Quebec’s solar air heating boom: the Trigo Energies story
    Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies.
    Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.”
    One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.
     
    Blue or black, but always efficient: the advanced absorber coating
    In October 2024, the majority of the new 2,750 m²solar façade at FAB3R began operation. According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system.
    The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating.
    Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon.
    Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy
    Matrix Energy: collaborating with architects and engineers in new builds
    The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy.
    Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers.
    “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added.
    Finding the right flow: the importance of unitary airflow rates
    One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance.
    For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170, or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m²offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained.
    It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² are necessary.
    Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering
    Solar air heating systems support LEED-certified building designs
    Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto, where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m².
    “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick.
    The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances.
    The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future.
    Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif

    Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication.
    The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect.
    #oped #canadas #leadership #solar #air
    Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects
    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada. Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption. Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits. Figure 1: Preheating air for industrial buildings: 2,750 m2of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies Quebec’s solar air heating boom: the Trigo Energies story Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies. Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.” One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.   Blue or black, but always efficient: the advanced absorber coating In October 2024, the majority of the new 2,750 m²solar façade at FAB3R began operation. According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system. The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating. Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon. Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy Matrix Energy: collaborating with architects and engineers in new builds The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy. Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers. “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added. Finding the right flow: the importance of unitary airflow rates One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance. For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170, or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m²offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained. It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² are necessary. Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering Solar air heating systems support LEED-certified building designs Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto, where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m². “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick. The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances. The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future. Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication. The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect. #oped #canadas #leadership #solar #air
    WWW.CANADIANARCHITECT.COM
    Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects
    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2 (282,046 ft2) of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada. Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption. Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits. Figure 1: Preheating air for industrial buildings: 2,750 m2 (29,600 ft2) of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies Quebec’s solar air heating boom: the Trigo Energies story Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies. Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.” One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.   Blue or black, but always efficient: the advanced absorber coating In October 2024, the majority of the new 2,750 m² (29,600 ft2) solar façade at FAB3R began operation (see figure 1). According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system. The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating. Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon. Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2 (2,045 ft2) south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy Matrix Energy: collaborating with architects and engineers in new builds The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy. Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers. “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added. Finding the right flow: the importance of unitary airflow rates One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance. For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170 (m3/h/m2), or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m² (7.2 cfm/ft2) offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained. It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² (8.3 to 9.4 cfm/ft2)  are necessary. Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2 (1,722 ft2) of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering Solar air heating systems support LEED-certified building designs Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto (see Figure 3), where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m² (10,764 ft2). “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick. The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances. The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future. Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2 (775 ft2) Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication. The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect.
    0 Kommentare 0 Anteile
  • Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets

    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence

    A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan.
    "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets."
    The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites.

    Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets.
    While users can create temporary, permanent, or custominvite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases.

    This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server.
    "This creates a serious risk: Users who follow previously trusted invite linkscan unknowingly be redirected to fake Discord servers created by threat actors," Check Point said.
    The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button.
    This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification.

    Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string", and press Enter to authenticate their accounts.
    But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them.
    At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks.
    AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-controlserver by reading a Pastebin file.
    The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms.
    Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office.
    The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook.
    The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain.

    Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times.
    It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom.
    The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery networkabused to host malware in the past.
    "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers."
    "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain."

    Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.

    SHARE




    #discord #invite #link #hijacking #delivers
    Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets
    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan. "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets." The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites. Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets. While users can create temporary, permanent, or custominvite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases. This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server. "This creates a serious risk: Users who follow previously trusted invite linkscan unknowingly be redirected to fake Discord servers created by threat actors," Check Point said. The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button. This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification. Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string", and press Enter to authenticate their accounts. But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them. At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks. AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-controlserver by reading a Pastebin file. The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms. Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office. The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook. The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain. Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times. It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom. The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery networkabused to host malware in the past. "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers." "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE     #discord #invite #link #hijacking #delivers
    THEHACKERNEWS.COM
    Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets
    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan. "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets." The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites. Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets. While users can create temporary, permanent, or custom (vanity) invite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases. This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server. "This creates a serious risk: Users who follow previously trusted invite links (e.g., on websites, blogs, or forums) can unknowingly be redirected to fake Discord servers created by threat actors," Check Point said. The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button. This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification. Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string" (i.e., the PowerShell command), and press Enter to authenticate their accounts. But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them. At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks. AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-control (C2) server by reading a Pastebin file. The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms. Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office. The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook. The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain. Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times. It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom. The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery network (CDN) abused to host malware in the past. "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers." "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE    
    0 Kommentare 0 Anteile
  • Industrial Design Case Study: Industrial Kitchen Equipment

    This case study is from Brooklyn-based Curve ID.JAVAR is a Colombian-based company focused on industrial kitchen equipment. For more than 30 years, JAVAR has been part of the transformation of the butcher industry in Colombia, contributing to build products that meet compliance with stricter sanitary standards. JAVAR approached us to develop an all-new range of meat grinders that will be built in Colombia and designed to meet international sanitary standards. Our process started with an in-depth research phase in which we learned how these machines are built and about the butcher industry of Colombia as well as the U.S.With these findings, we gained valuable knowledge that helped us guide the design of the project. We sketched a wide variety of different forms that give the product a robust and easy to clean look. After down-selecting our design ideas, we began to define how the machine will be manufactured, keeping the number of parts low and capable of adapting to different model sizes. After several rounds of CAD development and working closely with engineers, we had enough data to begin prototyping and testing. Our final design focused on easy-to-clean surfaces with a robust stance that communicates durability. You can see more of Curve ID's work here.
    #industrial #design #case #study #kitchen
    Industrial Design Case Study: Industrial Kitchen Equipment
    This case study is from Brooklyn-based Curve ID.JAVAR is a Colombian-based company focused on industrial kitchen equipment. For more than 30 years, JAVAR has been part of the transformation of the butcher industry in Colombia, contributing to build products that meet compliance with stricter sanitary standards. JAVAR approached us to develop an all-new range of meat grinders that will be built in Colombia and designed to meet international sanitary standards. Our process started with an in-depth research phase in which we learned how these machines are built and about the butcher industry of Colombia as well as the U.S.With these findings, we gained valuable knowledge that helped us guide the design of the project. We sketched a wide variety of different forms that give the product a robust and easy to clean look. After down-selecting our design ideas, we began to define how the machine will be manufactured, keeping the number of parts low and capable of adapting to different model sizes. After several rounds of CAD development and working closely with engineers, we had enough data to begin prototyping and testing. Our final design focused on easy-to-clean surfaces with a robust stance that communicates durability. You can see more of Curve ID's work here. #industrial #design #case #study #kitchen
    WWW.CORE77.COM
    Industrial Design Case Study: Industrial Kitchen Equipment
    This case study is from Brooklyn-based Curve ID.JAVAR is a Colombian-based company focused on industrial kitchen equipment. For more than 30 years, JAVAR has been part of the transformation of the butcher industry in Colombia, contributing to build products that meet compliance with stricter sanitary standards. JAVAR approached us to develop an all-new range of meat grinders that will be built in Colombia and designed to meet international sanitary standards. Our process started with an in-depth research phase in which we learned how these machines are built and about the butcher industry of Colombia as well as the U.S.With these findings, we gained valuable knowledge that helped us guide the design of the project. We sketched a wide variety of different forms that give the product a robust and easy to clean look. After down-selecting our design ideas, we began to define how the machine will be manufactured, keeping the number of parts low and capable of adapting to different model sizes. After several rounds of CAD development and working closely with engineers, we had enough data to begin prototyping and testing. Our final design focused on easy-to-clean surfaces with a robust stance that communicates durability. You can see more of Curve ID's work here.
    0 Kommentare 0 Anteile
  • How a planetarium show discovered a spiral at the edge of our solar system

    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system.

    “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist.

    Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years. 

    The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?” 

    To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data.

    “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says. 

    The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars.

    “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.”

    She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’” 

    While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space ShowMore simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves. 

    In each simulation, the spiral persisted.

    “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’” 

    An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system.As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system.

    “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.”

    “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.”

    It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.”

    The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems.

    Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”

     In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths.Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show.

    “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’

    “ThenNeil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'”

    “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds.

    The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.”

    By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies.

    To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX.

    The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.” 

    The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.”

    Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data.

    “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.”

    As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands.

    Our Oort cloud, a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud“New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent. 

    More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud. 

    Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.” 

    The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud. 

    For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park.
    #how #planetarium #show #discovered #spiral
    How a planetarium show discovered a spiral at the edge of our solar system
    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system. “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist. Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years.  The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?”  To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data. “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says.  The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars. “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.” She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’”  While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space ShowMore simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves.  In each simulation, the spiral persisted. “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’”  An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system.As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system. “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.” “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.” It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.” The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems. Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”  In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths.Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show. “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’ “ThenNeil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'” “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds. The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.” By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies. To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX. The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.”  The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.” Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data. “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.” As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands. Our Oort cloud, a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud“New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent.  More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud.  Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.”  The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud.  For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park. #how #planetarium #show #discovered #spiral
    WWW.FASTCOMPANY.COM
    How a planetarium show discovered a spiral at the edge of our solar system
    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system. “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist. Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years.  The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?”  To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data. “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says.  The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars. “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.” She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’”  While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space Show (curving, dusty S-shape behind the Sun) [Image: © AMNH] More simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves.  In each simulation, the spiral persisted. “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’”  An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system. [Image: NASA] As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system. “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.” “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.” It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.” The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems. Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”  In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths. [Image: © AMNH] Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show. “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’ “Then [planetarium’s director] Neil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'” “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds. The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.” By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies. To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX. The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.”  The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.” Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data. “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.” As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands. Our Oort cloud (center), a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud [Image: © AMNH ] “New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent.  More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud.  Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.”  The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud.  For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park.
    0 Kommentare 0 Anteile
Suchergebnis