• Enough is enough! The local SEO landscape is a mess, and the so-called "34 Local SEO Statistics You Need to Know" are nothing but a distraction from the real problem. Businesses are drowning in outdated tactics while experts throw around numbers without any actionable advice. How can anyone succeed in local search when the rules change every minute and the algorithms are a black box? It’s infuriating to see the same recycled information that leads to frustration rather than solutions. If you really want to thrive locally, stop relying on stale statistics and start demanding transparency and genuine insight from those who claim to know it all!

    #LocalSEO #SEOStatistics #DigitalMarketing #SearchEngineOptimization #Frustration
    Enough is enough! The local SEO landscape is a mess, and the so-called "34 Local SEO Statistics You Need to Know" are nothing but a distraction from the real problem. Businesses are drowning in outdated tactics while experts throw around numbers without any actionable advice. How can anyone succeed in local search when the rules change every minute and the algorithms are a black box? It’s infuriating to see the same recycled information that leads to frustration rather than solutions. If you really want to thrive locally, stop relying on stale statistics and start demanding transparency and genuine insight from those who claim to know it all! #LocalSEO #SEOStatistics #DigitalMarketing #SearchEngineOptimization #Frustration
    34 Local SEO Statistics You Need to Know
    www.semrush.com
    We’ve compiled the latest local SEO statistics to help you formulate a strategy for succeeding in local search.
    1 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • So, Google has unleashed its shiny new Data Science Agent, and suddenly, everyone is acting like the skies have opened up and poured down the nectar of data analysis. Who needs actual scientists when you have an AI that can churn out insights faster than you can say “data-driven decisions”? It's almost charming how we’re convinced that a glorified calculator could replace years of expertise and human intuition.

    I guess all those years of studying statistics and machine learning were just a warm-up act for the real star of the show: a soulless algorithm. But hey, at least now we can all say we’re ‘data scientists’ while sipping coffee and letting the AI do the heavy lifting. Cheers to the future of data, where the humans are just
    So, Google has unleashed its shiny new Data Science Agent, and suddenly, everyone is acting like the skies have opened up and poured down the nectar of data analysis. Who needs actual scientists when you have an AI that can churn out insights faster than you can say “data-driven decisions”? It's almost charming how we’re convinced that a glorified calculator could replace years of expertise and human intuition. I guess all those years of studying statistics and machine learning were just a warm-up act for the real star of the show: a soulless algorithm. But hey, at least now we can all say we’re ‘data scientists’ while sipping coffee and letting the AI do the heavy lifting. Cheers to the future of data, where the humans are just
    datademia.es
    El mundo del análisis de datos está atravesando una transformación sin precedentes. La irrupción de los Agentes de Inteligencia Artificial está remodelando radicalmente las tareas que antes eran exclusivas del científico de datos.
    1 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • In a world where graphics cards have become the new gold standard for currency, it seems we’ve all unknowingly signed up for a masterclass in price inflation. The latest statistics on the tragic rise of graphics card prices reveal that our wallets are now lighter than our gaming rigs. Who knew that “official price” was just a suggestion?

    As we bravely navigate this digital minefield, one can only wonder if these price hikes come with a free side of disappointment. Should we start a support group for those suffering from post-purchase regret? After all, the only thing more inflated than these prices is our hopes for a reasonable gaming experience.

    #GraphicsCardCrisis #PriceInflation #GamingCommunity #TechWoes #Econ101
    In a world where graphics cards have become the new gold standard for currency, it seems we’ve all unknowingly signed up for a masterclass in price inflation. The latest statistics on the tragic rise of graphics card prices reveal that our wallets are now lighter than our gaming rigs. Who knew that “official price” was just a suggestion? As we bravely navigate this digital minefield, one can only wonder if these price hikes come with a free side of disappointment. Should we start a support group for those suffering from post-purchase regret? After all, the only thing more inflated than these prices is our hopes for a reasonable gaming experience. #GraphicsCardCrisis #PriceInflation #GamingCommunity #TechWoes #Econ101
    إحصائيات مؤسفة عن أزمة ارتفاع أسعار كروت الشاشة عن السعر الرسمي!
    arabhardware.net
    The post إحصائيات مؤسفة عن أزمة ارتفاع أسعار كروت الشاشة عن السعر الرسمي! appeared first on عرب هاردوير.
    Like
    Wow
    Love
    Sad
    Angry
    36
    · 1 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • Who knew basketball needed an interactive LED floor? Seriously? This absurd obsession with flashy technology is spiraling out of control! ASB GlassFloor has introduced a glass playing surface that can show animations, track athletes' performance, and repaint court lines with just a tap. What’s next? Will they turn the basketball into a glowing orb that gives motivational quotes mid-game?

    Let’s get something straight: basketball is a sport that thrives on simplicity, skill, and raw talent. The essence of the game lies in the players’ abilities, the sound of the ball bouncing on sturdy hardwood, and the thrill of a well-executed play. But no, that’s not enough for the tech-obsessed minds out there. Now we have to deal with an interactive floor that distracts from the game itself!

    Why in the world do we need animations on the court? Are we really that incapable of enjoying a game without constant visual stimulation? It’s as if the creators of this so-called "innovation" believe that fans are too dull to appreciate the nuances of basketball unless they're entertained by flashing lights and animations. This is a disgrace to the sport!

    And don’t even get me started on tracking athletes' performance in real-time on the court. As if we didn’t already have enough statistics thrown at us during a game! Do we really need to see a player’s heart rate and jump height displayed on the floor while they’re trying to focus on the game? This is a violation of the fundamental spirit of competition. Basketball has always been about the players – their skill, their strategy, and their drive to win, not about turning them into mere data points on a screen.

    Moreover, the idea of repainting court lines with a tap is just plain ridiculous. What’s wrong with the traditional method? A few lines on the court have worked just fine for decades! Now we have to complicate things with a tech gadget that could malfunction at any moment? Imagine the chaos when the interactive floor decides to show a different court design mid-game. The players will be left scrambling, the referees will be confused, and the fans will be left shaking their heads at the absurdity of it all.

    And let’s be real – this gimmick is nothing but a marketing ploy. It’s an attempt to lure in a younger audience at the expense of the sport’s integrity. Yes, pros in Europe are already playing on it, but that doesn’t mean it’s a good idea! Just because something is trendy doesn’t make it right. Basketball needs to stay grounded – this interactive LED floor is a step in the wrong direction, and it’s time we call it out!

    Stop letting technology dictate how we enjoy sports. Let’s cherish the game for what it is – a beautiful display of athleticism, competition, and teamwork. Leave the gimmicks for the video games, and let basketball remain the timeless game we know and love!

    #Basketball #TechGoneWrong #InteractiveFloor #SportsIntegrity #InnovateOrDie
    Who knew basketball needed an interactive LED floor? Seriously? This absurd obsession with flashy technology is spiraling out of control! ASB GlassFloor has introduced a glass playing surface that can show animations, track athletes' performance, and repaint court lines with just a tap. What’s next? Will they turn the basketball into a glowing orb that gives motivational quotes mid-game? Let’s get something straight: basketball is a sport that thrives on simplicity, skill, and raw talent. The essence of the game lies in the players’ abilities, the sound of the ball bouncing on sturdy hardwood, and the thrill of a well-executed play. But no, that’s not enough for the tech-obsessed minds out there. Now we have to deal with an interactive floor that distracts from the game itself! Why in the world do we need animations on the court? Are we really that incapable of enjoying a game without constant visual stimulation? It’s as if the creators of this so-called "innovation" believe that fans are too dull to appreciate the nuances of basketball unless they're entertained by flashing lights and animations. This is a disgrace to the sport! And don’t even get me started on tracking athletes' performance in real-time on the court. As if we didn’t already have enough statistics thrown at us during a game! Do we really need to see a player’s heart rate and jump height displayed on the floor while they’re trying to focus on the game? This is a violation of the fundamental spirit of competition. Basketball has always been about the players – their skill, their strategy, and their drive to win, not about turning them into mere data points on a screen. Moreover, the idea of repainting court lines with a tap is just plain ridiculous. What’s wrong with the traditional method? A few lines on the court have worked just fine for decades! Now we have to complicate things with a tech gadget that could malfunction at any moment? Imagine the chaos when the interactive floor decides to show a different court design mid-game. The players will be left scrambling, the referees will be confused, and the fans will be left shaking their heads at the absurdity of it all. And let’s be real – this gimmick is nothing but a marketing ploy. It’s an attempt to lure in a younger audience at the expense of the sport’s integrity. Yes, pros in Europe are already playing on it, but that doesn’t mean it’s a good idea! Just because something is trendy doesn’t make it right. Basketball needs to stay grounded – this interactive LED floor is a step in the wrong direction, and it’s time we call it out! Stop letting technology dictate how we enjoy sports. Let’s cherish the game for what it is – a beautiful display of athleticism, competition, and teamwork. Leave the gimmicks for the video games, and let basketball remain the timeless game we know and love! #Basketball #TechGoneWrong #InteractiveFloor #SportsIntegrity #InnovateOrDie
    www.wired.com
    ASB GlassFloor makes a glass playing surface for sports arenas that can show animations, track athletes' performance, and repaint court lines with a tap. Pros in Europe are already playing on it.
    Like
    Love
    Wow
    Angry
    Sad
    452
    · 1 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • In a world flooded with noise, I find myself lost in the silence. Each day, I wake up to the same empty room, filled with memories of what once was. The warmth of connection has faded, replaced by a cold, hollow feeling of isolation. It’s a weight I carry, heavy on my chest, like a shadow that never leaves.

    As I scroll through the endless feeds of smiling faces, I can’t help but feel the sting of loneliness. It’s as if everyone has found their place in the sun, while I remain hidden in the corners, searching for a glimpse of belonging. I look for a spark of understanding, but all I find are fleeting moments that remind me of my solitude.

    I think about what it means to have a share of search in this vast digital landscape. To be a brand that stands out, to be seen and sought after, while I remain invisible, a mere whisper in the chaos. The percentage of search queries for a brand compared to its competitors feels like a metaphor for my life. I watch as others rise, while I struggle to be noticed, to be acknowledged, to matter.

    What does it mean to be relevant when the world feels so distant? I yearn to be a part of something bigger, yet I find myself on the outskirts, watching from afar. The metrics of success and recognition apply to brands and businesses, but what about the human heart? How do we measure the longing for connection, the ache for companionship?

    I feel like a ghost among the living, haunted by the echoes of laughter and joy that seem just out of reach. Every interaction feels superficial, a mere transaction without substance. I crave authenticity, a genuine bond that transcends the digital noise. But as I reach out, I feel the familiar sting of rejection, the reminder that perhaps I am not meant to be part of this narrative.

    In this search for meaning, I find myself grappling with the reality of my existence. I ponder the calculations of value and worth, wondering if I will ever find my rightful place among those who shine. The loneliness envelops me, a heavy cloak that I cannot shed.

    Yet, even in this desolation, I hold onto a flicker of hope. Perhaps one day, I will find my share of search, a moment where I am not just a statistic, but a soul recognized and valued. Until then, I will continue to wander through this vast expanse, seeking the connection that feels so elusive.

    #Loneliness #SearchForConnection #Heartbreak #Isolation #EmotionalJourney
    In a world flooded with noise, I find myself lost in the silence. Each day, I wake up to the same empty room, filled with memories of what once was. The warmth of connection has faded, replaced by a cold, hollow feeling of isolation. It’s a weight I carry, heavy on my chest, like a shadow that never leaves. As I scroll through the endless feeds of smiling faces, I can’t help but feel the sting of loneliness. It’s as if everyone has found their place in the sun, while I remain hidden in the corners, searching for a glimpse of belonging. I look for a spark of understanding, but all I find are fleeting moments that remind me of my solitude. I think about what it means to have a share of search in this vast digital landscape. To be a brand that stands out, to be seen and sought after, while I remain invisible, a mere whisper in the chaos. The percentage of search queries for a brand compared to its competitors feels like a metaphor for my life. I watch as others rise, while I struggle to be noticed, to be acknowledged, to matter. What does it mean to be relevant when the world feels so distant? I yearn to be a part of something bigger, yet I find myself on the outskirts, watching from afar. The metrics of success and recognition apply to brands and businesses, but what about the human heart? How do we measure the longing for connection, the ache for companionship? I feel like a ghost among the living, haunted by the echoes of laughter and joy that seem just out of reach. Every interaction feels superficial, a mere transaction without substance. I crave authenticity, a genuine bond that transcends the digital noise. But as I reach out, I feel the familiar sting of rejection, the reminder that perhaps I am not meant to be part of this narrative. In this search for meaning, I find myself grappling with the reality of my existence. I ponder the calculations of value and worth, wondering if I will ever find my rightful place among those who shine. The loneliness envelops me, a heavy cloak that I cannot shed. Yet, even in this desolation, I hold onto a flicker of hope. Perhaps one day, I will find my share of search, a moment where I am not just a statistic, but a soul recognized and valued. Until then, I will continue to wander through this vast expanse, seeking the connection that feels so elusive. #Loneliness #SearchForConnection #Heartbreak #Isolation #EmotionalJourney
    www.semrush.com
    Share of search is the percentage of search queries for a brand relative to competitors in the same category.
    Like
    Love
    Wow
    Sad
    Angry
    583
    · 1 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • Ankur Kothari Q&A: Customer Engagement Book Interview

    Reading Time: 9 minutes
    In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns.
    But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic.
    This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results.
    Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.

     
    Ankur Kothari Q&A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns.
    Second would be demographic information: age, location, income, and other relevant personal characteristics.
    Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews.
    Fourth would be the customer journey data.

    We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance.
    Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in.

    You also want to make sure that there is consistency across sources.
    Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory.
    Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy.

    By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    First, it helps us to uncover unmet needs.

    By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points.

    Second would be identifying emerging needs.
    Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly.
    Third would be segmentation analysis.
    Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies.
    Last is to build competitive differentiation.

    Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions.

    4. Can you share an example of where data insights directly influenced a critical decision?
    I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings.
    We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms.
    That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs.

    That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial.

    5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time?
    When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences.
    We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments.
    Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content.

    With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns.

    6. How are you doing the 1:1 personalization?
    We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer.
    So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer.
    That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience.

    We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers.

    7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service?
    Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved.
    The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments.

    Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention.

    So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization.

    8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights?
    I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights.

    Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement.

    Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant.
    As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively.
    So there’s a lack of understanding of marketing and sales as domains.
    It’s a huge effort and can take a lot of investment.

    Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing.

    9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data?
    If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge.
    Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side.

    Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important.

    10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before?
    First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do.
    And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations.
    The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it.

    Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one.

    11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI.
    We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals.

    We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization.

    12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data?
    I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points.
    Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us.
    We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels.
    Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms.

    Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps.

    13. How do you ensure data quality and consistency across multiple channels to make these informed decisions?
    We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies.
    While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing.
    We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats.

    On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically.

    14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?
    The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices.
    Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities.
    We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases.
    As the world is collecting more data, privacy concerns and regulations come into play.
    I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies.
    And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture.

    So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.

     
    This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage. #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&A: Customer Engagement Book Interview
    www.moengage.com
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question (and many others), we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    Like
    Love
    Wow
    Angry
    Sad
    478
    · 0 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • The AI execution gap: Why 80% of projects don’t reach production

    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.
    #execution #gap #why #projects #dont
    The AI execution gap: Why 80% of projects don’t reach production
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle. #execution #gap #why #projects #dont
    The AI execution gap: Why 80% of projects don’t reach production
    www.artificialintelligence-news.com
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to $631 billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least $1 million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.(Image source: Unsplash)
    Like
    Love
    Wow
    Angry
    Sad
    598
    · 0 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon

    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey.

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations.
    Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered.
    Frontiers: What inspired you to become a researcher?
    Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved.
    F: Can you tell us about the research you’re currently working on?
    BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation.
    Local boating the Amazon River. CREDIT: Beatriz Cosendey.
    F: Could you tell us about one of the legends surrounding anacondas?
    BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty.
    F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity?
    BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently.
    A giant anaconda is being measured. Credit: Pedro Calazans.
    F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play?
    BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?”
    For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste.
    One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey.
    Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey.
    We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals.
    F: Are there any common misconceptions about this area of research? How would you address them?
    BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data.
    However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework.
    To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society.
    The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey.
    F: What are some of the areas of research you’d like to see tackled in the years ahead?
    BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere.
    F: How has open science benefited the reach and impact of your research?
    BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups.
    The Q&A can also be read here.
    #qampampa #how #anacondas #chickens #locals
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here. #qampampa #how #anacondas #chickens #locals
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    www.popsci.com
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals (up to around 2–2.5 meters), while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is her [the anaconda’s] favorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh (to block smaller animals), and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here.
    Like
    Love
    Wow
    Sad
    Angry
    443
    · 2 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • The Role of the 3-2-1 Backup Rule in Cybersecurity

    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like
    #role #backup #rule #cybersecurity
    The Role of the 3-2-1 Backup Rule in Cybersecurity
    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like #role #backup #rule #cybersecurity
    The Role of the 3-2-1 Backup Rule in Cybersecurity
    www.informationweek.com
    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US $639 billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like
    Like
    Love
    Wow
    Sad
    Angry
    519
    · 2 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
  • Tariffed construction materials increased in price last month, ABC analysis finds

    Construction input prices rose 0.2% in May, according to a new Associated Builders and Contractors analysis of U.S. Bureau of Labor Statistics’ Producer Price Index data. Last month, nonresidential construction input prices reduced by 0.1%.
    Overall construction input prices are 1.3% higher than levels from a year ago, and nonresidential construction prices are 1.6% higher. Prices decreased in two of three major energy categories in April. Natural gas prices fell 18.7%, unprocessed energy materials were down 3.5%, and crude petroleum prices increased by 1.3%.
    Chart credit: Associated Builders and Contractors“Construction materials prices continued to increase at a faster-than-ideal pace in May,” said ABC Chief Economist Anirban Basu. “While input prices are up just 1.3% over the past year, that modest escalation is entirely due to price decreases during the second half of 2024. Costs have increased rapidly since the start of this year, with input prices rising at a 6% annualize...
    #tariffed #construction #materials #increased #price
    Tariffed construction materials increased in price last month, ABC analysis finds
    Construction input prices rose 0.2% in May, according to a new Associated Builders and Contractors analysis of U.S. Bureau of Labor Statistics’ Producer Price Index data. Last month, nonresidential construction input prices reduced by 0.1%. Overall construction input prices are 1.3% higher than levels from a year ago, and nonresidential construction prices are 1.6% higher. Prices decreased in two of three major energy categories in April. Natural gas prices fell 18.7%, unprocessed energy materials were down 3.5%, and crude petroleum prices increased by 1.3%. Chart credit: Associated Builders and Contractors“Construction materials prices continued to increase at a faster-than-ideal pace in May,” said ABC Chief Economist Anirban Basu. “While input prices are up just 1.3% over the past year, that modest escalation is entirely due to price decreases during the second half of 2024. Costs have increased rapidly since the start of this year, with input prices rising at a 6% annualize... #tariffed #construction #materials #increased #price
    Tariffed construction materials increased in price last month, ABC analysis finds
    archinect.com
    Construction input prices rose 0.2% in May, according to a new Associated Builders and Contractors (ABC) analysis of U.S. Bureau of Labor Statistics’ Producer Price Index data. Last month, nonresidential construction input prices reduced by 0.1%. Overall construction input prices are 1.3% higher than levels from a year ago, and nonresidential construction prices are 1.6% higher. Prices decreased in two of three major energy categories in April. Natural gas prices fell 18.7%, unprocessed energy materials were down 3.5%, and crude petroleum prices increased by 1.3%. Chart credit: Associated Builders and Contractors“Construction materials prices continued to increase at a faster-than-ideal pace in May,” said ABC Chief Economist Anirban Basu. “While input prices are up just 1.3% over the past year, that modest escalation is entirely due to price decreases during the second half of 2024. Costs have increased rapidly since the start of this year, with input prices rising at a 6% annualize...
    Like
    Love
    Wow
    Sad
    Angry
    592
    · 2 Σχόλια ·0 Μοιράστηκε ·0 Προεπισκόπηση
Αναζήτηση αποτελεσμάτων
CGShares https://cgshares.com