• Christian Marclay explores a universe of thresholds in his latest single-channel montage of film clips

    DoorsChristian Marclay
    Institute of Contemporary Art Boston
    Through September 1, 2025Brooklyn Museum

    Through April 12, 2026On the screen, a movie clip plays of a character entering through a door to leave out another. It cuts to another clip of someone else doing the same thing over and over, all sourced from a panoply of Western cinema. The audience, sitting for an unknown amount of time, watches this shape-shifting protagonist from different cultural periods come and go, as the film endlessly loops.

    So goes Christian Marclay’s latest single-channel film, Doors, currently exhibited for the first time in the United States at the Institute of Contemporary Art Boston.. Assembled over ten years, the film is a dizzying feat, a carefully crafted montage of film clips revolving around the simple premise of someone entering through a door and then leaving out a door. In the exhibition, Marclay writes, “Doors are fascinating objects, rich with symbolism.” Here, he shows hundreds of them, examining through film how the simple act of moving through a threshold multiplied endlessly creates a profoundly new reading of what said threshold signifies.
    On paper, this may sound like an extremely jarring experience. But Marclay—a visual artist, composer, and DJ whose previous works such as The Clockinvolved similar mega-montages of disparate film clips—has a sensitive touch. The sequences feel incredibly smooth, the montage carefully constructed to mimic continuity as closely as possible. This is even more impressive when one imagines the constraints that a door’s movement offers; it must open and close a certain direction, with particular types of hinges or means of swinging. It makes the seamlessness of the film all the more fascinating to dissect. When a tiny wooden doorframe cuts to a large double steel door, my brain had no issue at all registering a sense of continued motion through the frame—a form of cinematic magic.
    Christian Marclay, Doors, 2022. Single-channel video projection.
    Watching the clips, there seemed to be no discernible meta narrative—simply movement through doors. Nevertheless, Marclay is a master of controlling tone. Though the relentlessness of watching the loops does create an overall feeling of tension that the film is clearly playing on, there are often moments of levity that interrupt, giving visitors a chance to breathe. The pacing too, swings from a person rushing in and out, to a slow stroll between doors in a corridor. It leaves one musing on just how ubiquitous this simple action is, and how mutable these simple acts of pulling a door and stepping inside can be. Sometimes mundane, sometimes thrilling, sometimes in anticipation, sometimes in search—Doors invites us to reflect on our own interaction with these objects, and with the very act of stepping through a doorframe.

    Much of the experience rests on the soundscape and music, which is equally—if not more heavily—important in creating the transition across clips. Marclay’s previous work leaned heavily on his interest in aural media; this added dimension only enriches Doors and elevates it beyond a formal visual study of clips that match each other. The film bleeds music from one scene to another, sometimes prematurely, to make believable the movement of one character across multiple movies. This overlap of sounds is essentially an echo of the space we left behind and are entering into. We as the audience almost believe—even if just for a second—that the transition is real.
    The effect is powerful and calls to mind several references. No doubt Doors owes some degree of inspiration to the lineage of surrealist art, perhaps in the work of Magritte or Duchamp. For those steeped in architecture, one may think of Bernard Tschumi’s Manhattan Transcripts, where his transcriptions of events, spaces, and movements similarly both shatter and call to attention simple spatial sequences. One may also be reminded of the work of Situationist International, particularly the psychogeography of Guy Debord. I confess that my first thought was theequally famous door-chase scene in Monsters, Inc. But regardless of what corollaries one may conjure, Doors has a wholly unique feel. It is simplistic and singular in constructing its webbed world.
    Installation view, Christian Marclay: Doors, the Institute of Contemporary Art/Boston, 2025.But what exactly are we to take away from this world? In an interview with Artforum, Marclay declares, “I’m building in people’s minds an architecture in which to get lost.” The clip evokes a certain act of labyrinthian mapping—or perhaps a mode of perpetual resetting. I began to imagine this almost as a non-Euclidean enfilade of sorts where each room invites you to quickly grasp a new environment and then very quickly anticipate what may be in the next. With the understanding that you can’t backtrack, and the unpredictability of the next door taking you anywhere, the film holds you in total suspense. The production of new spaces and new architecture is activated all at once in the moment someone steps into a new doorway.

    All of this is without even mentioning the chosen films themselves. There is a degree to which the pop-culture element of Marclay’s work makes certain moments click—I can’t help but laugh as I watch Adam Sandler in Punch Drunk Love exit a door and emerge as Bette Davis in All About Eve. But to a degree, I also see the references being secondary, and certainly unneeded to understand the visceral experience Marclay crafts. It helps that, aside from a couple of jarring character movements or one-off spoken jokes, the movement is repetitive and universal.
    Doors runs on a continuous loop. I sat watching for just under an hour before convincing myself that I would never find any appropriate or correct time to leave. Instead, I could sit endlessly and reflect on each character movement, each new reveal of a room. Is the door the most important architectural element in creating space? Marclay makes a strong case for it with this piece.
    Harish Krishnamoorthy is an architectural and urban designer based in Cambridge, Massachusetts, and Bangalore, India. He is an editor at PAIRS.
    #christian #marclay #explores #universe #thresholds
    Christian Marclay explores a universe of thresholds in his latest single-channel montage of film clips
    DoorsChristian Marclay Institute of Contemporary Art Boston Through September 1, 2025Brooklyn Museum Through April 12, 2026On the screen, a movie clip plays of a character entering through a door to leave out another. It cuts to another clip of someone else doing the same thing over and over, all sourced from a panoply of Western cinema. The audience, sitting for an unknown amount of time, watches this shape-shifting protagonist from different cultural periods come and go, as the film endlessly loops. So goes Christian Marclay’s latest single-channel film, Doors, currently exhibited for the first time in the United States at the Institute of Contemporary Art Boston.. Assembled over ten years, the film is a dizzying feat, a carefully crafted montage of film clips revolving around the simple premise of someone entering through a door and then leaving out a door. In the exhibition, Marclay writes, “Doors are fascinating objects, rich with symbolism.” Here, he shows hundreds of them, examining through film how the simple act of moving through a threshold multiplied endlessly creates a profoundly new reading of what said threshold signifies. On paper, this may sound like an extremely jarring experience. But Marclay—a visual artist, composer, and DJ whose previous works such as The Clockinvolved similar mega-montages of disparate film clips—has a sensitive touch. The sequences feel incredibly smooth, the montage carefully constructed to mimic continuity as closely as possible. This is even more impressive when one imagines the constraints that a door’s movement offers; it must open and close a certain direction, with particular types of hinges or means of swinging. It makes the seamlessness of the film all the more fascinating to dissect. When a tiny wooden doorframe cuts to a large double steel door, my brain had no issue at all registering a sense of continued motion through the frame—a form of cinematic magic. Christian Marclay, Doors, 2022. Single-channel video projection. Watching the clips, there seemed to be no discernible meta narrative—simply movement through doors. Nevertheless, Marclay is a master of controlling tone. Though the relentlessness of watching the loops does create an overall feeling of tension that the film is clearly playing on, there are often moments of levity that interrupt, giving visitors a chance to breathe. The pacing too, swings from a person rushing in and out, to a slow stroll between doors in a corridor. It leaves one musing on just how ubiquitous this simple action is, and how mutable these simple acts of pulling a door and stepping inside can be. Sometimes mundane, sometimes thrilling, sometimes in anticipation, sometimes in search—Doors invites us to reflect on our own interaction with these objects, and with the very act of stepping through a doorframe. Much of the experience rests on the soundscape and music, which is equally—if not more heavily—important in creating the transition across clips. Marclay’s previous work leaned heavily on his interest in aural media; this added dimension only enriches Doors and elevates it beyond a formal visual study of clips that match each other. The film bleeds music from one scene to another, sometimes prematurely, to make believable the movement of one character across multiple movies. This overlap of sounds is essentially an echo of the space we left behind and are entering into. We as the audience almost believe—even if just for a second—that the transition is real. The effect is powerful and calls to mind several references. No doubt Doors owes some degree of inspiration to the lineage of surrealist art, perhaps in the work of Magritte or Duchamp. For those steeped in architecture, one may think of Bernard Tschumi’s Manhattan Transcripts, where his transcriptions of events, spaces, and movements similarly both shatter and call to attention simple spatial sequences. One may also be reminded of the work of Situationist International, particularly the psychogeography of Guy Debord. I confess that my first thought was theequally famous door-chase scene in Monsters, Inc. But regardless of what corollaries one may conjure, Doors has a wholly unique feel. It is simplistic and singular in constructing its webbed world. Installation view, Christian Marclay: Doors, the Institute of Contemporary Art/Boston, 2025.But what exactly are we to take away from this world? In an interview with Artforum, Marclay declares, “I’m building in people’s minds an architecture in which to get lost.” The clip evokes a certain act of labyrinthian mapping—or perhaps a mode of perpetual resetting. I began to imagine this almost as a non-Euclidean enfilade of sorts where each room invites you to quickly grasp a new environment and then very quickly anticipate what may be in the next. With the understanding that you can’t backtrack, and the unpredictability of the next door taking you anywhere, the film holds you in total suspense. The production of new spaces and new architecture is activated all at once in the moment someone steps into a new doorway. All of this is without even mentioning the chosen films themselves. There is a degree to which the pop-culture element of Marclay’s work makes certain moments click—I can’t help but laugh as I watch Adam Sandler in Punch Drunk Love exit a door and emerge as Bette Davis in All About Eve. But to a degree, I also see the references being secondary, and certainly unneeded to understand the visceral experience Marclay crafts. It helps that, aside from a couple of jarring character movements or one-off spoken jokes, the movement is repetitive and universal. Doors runs on a continuous loop. I sat watching for just under an hour before convincing myself that I would never find any appropriate or correct time to leave. Instead, I could sit endlessly and reflect on each character movement, each new reveal of a room. Is the door the most important architectural element in creating space? Marclay makes a strong case for it with this piece. Harish Krishnamoorthy is an architectural and urban designer based in Cambridge, Massachusetts, and Bangalore, India. He is an editor at PAIRS. #christian #marclay #explores #universe #thresholds
    WWW.ARCHPAPER.COM
    Christian Marclay explores a universe of thresholds in his latest single-channel montage of film clips
    Doors (2022) Christian Marclay Institute of Contemporary Art Boston Through September 1, 2025Brooklyn Museum Through April 12, 2026On the screen, a movie clip plays of a character entering through a door to leave out another. It cuts to another clip of someone else doing the same thing over and over, all sourced from a panoply of Western cinema. The audience, sitting for an unknown amount of time, watches this shape-shifting protagonist from different cultural periods come and go, as the film endlessly loops. So goes Christian Marclay’s latest single-channel film, Doors (2022), currently exhibited for the first time in the United States at the Institute of Contemporary Art Boston. (It also premieres June 13 at the Brooklyn Museum and will run through April 12, 2026). Assembled over ten years, the film is a dizzying feat, a carefully crafted montage of film clips revolving around the simple premise of someone entering through a door and then leaving out a door. In the exhibition, Marclay writes, “Doors are fascinating objects, rich with symbolism.” Here, he shows hundreds of them, examining through film how the simple act of moving through a threshold multiplied endlessly creates a profoundly new reading of what said threshold signifies. On paper, this may sound like an extremely jarring experience. But Marclay—a visual artist, composer, and DJ whose previous works such as The Clock (2010) involved similar mega-montages of disparate film clips—has a sensitive touch. The sequences feel incredibly smooth, the montage carefully constructed to mimic continuity as closely as possible. This is even more impressive when one imagines the constraints that a door’s movement offers; it must open and close a certain direction, with particular types of hinges or means of swinging. It makes the seamlessness of the film all the more fascinating to dissect. When a tiny wooden doorframe cuts to a large double steel door, my brain had no issue at all registering a sense of continued motion through the frame—a form of cinematic magic. Christian Marclay, Doors (still), 2022. Single-channel video projection (color and black-and-white; 55:00 minutes on continuous loop). Watching the clips, there seemed to be no discernible meta narrative—simply movement through doors. Nevertheless, Marclay is a master of controlling tone. Though the relentlessness of watching the loops does create an overall feeling of tension that the film is clearly playing on, there are often moments of levity that interrupt, giving visitors a chance to breathe. The pacing too, swings from a person rushing in and out, to a slow stroll between doors in a corridor. It leaves one musing on just how ubiquitous this simple action is, and how mutable these simple acts of pulling a door and stepping inside can be. Sometimes mundane, sometimes thrilling, sometimes in anticipation, sometimes in search—Doors invites us to reflect on our own interaction with these objects, and with the very act of stepping through a doorframe. Much of the experience rests on the soundscape and music, which is equally—if not more heavily—important in creating the transition across clips. Marclay’s previous work leaned heavily on his interest in aural media; this added dimension only enriches Doors and elevates it beyond a formal visual study of clips that match each other. The film bleeds music from one scene to another, sometimes prematurely, to make believable the movement of one character across multiple movies. This overlap of sounds is essentially an echo of the space we left behind and are entering into. We as the audience almost believe—even if just for a second—that the transition is real. The effect is powerful and calls to mind several references. No doubt Doors owes some degree of inspiration to the lineage of surrealist art, perhaps in the work of Magritte or Duchamp. For those steeped in architecture, one may think of Bernard Tschumi’s Manhattan Transcripts, where his transcriptions of events, spaces, and movements similarly both shatter and call to attention simple spatial sequences. One may also be reminded of the work of Situationist International, particularly the psychogeography of Guy Debord. I confess that my first thought was the (in my view) equally famous door-chase scene in Monsters, Inc. But regardless of what corollaries one may conjure, Doors has a wholly unique feel. It is simplistic and singular in constructing its webbed world. Installation view, Christian Marclay: Doors, the Institute of Contemporary Art/Boston, 2025. (Mel Taing) But what exactly are we to take away from this world? In an interview with Artforum, Marclay declares, “I’m building in people’s minds an architecture in which to get lost.” The clip evokes a certain act of labyrinthian mapping—or perhaps a mode of perpetual resetting. I began to imagine this almost as a non-Euclidean enfilade of sorts where each room invites you to quickly grasp a new environment and then very quickly anticipate what may be in the next. With the understanding that you can’t backtrack, and the unpredictability of the next door taking you anywhere, the film holds you in total suspense. The production of new spaces and new architecture is activated all at once in the moment someone steps into a new doorway. All of this is without even mentioning the chosen films themselves. There is a degree to which the pop-culture element of Marclay’s work makes certain moments click—I can’t help but laugh as I watch Adam Sandler in Punch Drunk Love exit a door and emerge as Bette Davis in All About Eve. But to a degree, I also see the references being secondary, and certainly unneeded to understand the visceral experience Marclay crafts. It helps that, aside from a couple of jarring character movements or one-off spoken jokes, the movement is repetitive and universal. Doors runs on a continuous loop. I sat watching for just under an hour before convincing myself that I would never find any appropriate or correct time to leave. Instead, I could sit endlessly and reflect on each character movement, each new reveal of a room. Is the door the most important architectural element in creating space? Marclay makes a strong case for it with this piece. Harish Krishnamoorthy is an architectural and urban designer based in Cambridge, Massachusetts, and Bangalore, India. He is an editor at PAIRS.
    0 Yorumlar 0 hisse senetleri
  • Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals

    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access

    Stephanie Rudig

    - Freelance Writer

    June 11, 2025

    Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987
    Andrea Legge / © NYPL

    Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story.
    One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots.

    Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957

    Martha Swope / © NYPL

    At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School.
    Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’”
    Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library.

    An ensemble of dancers in rehearsal for the stage production Cats in 1982

    Martha Swope / © NYPL

    “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.”
    According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older,was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.”
    Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar.

    Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986

    Martha Swope / © NYPL

    It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.”
    Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.”
    Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space.

    From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988

    Martha Swope / © NYPL

    Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera.
    Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.”

    Get the latest Travel & Culture stories in your inbox.
    #meet #martha #swope #legendary #broadway
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access Stephanie Rudig - Freelance Writer June 11, 2025 Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987 Andrea Legge / © NYPL Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story. One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots. Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957 Martha Swope / © NYPL At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School. Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’” Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library. An ensemble of dancers in rehearsal for the stage production Cats in 1982 Martha Swope / © NYPL “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.” According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older,was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.” Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar. Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986 Martha Swope / © NYPL It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.” Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.” Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space. From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988 Martha Swope / © NYPL Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera. Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.” Get the latest Travel & Culture stories in your inbox. #meet #martha #swope #legendary #broadway
    WWW.SMITHSONIANMAG.COM
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access Stephanie Rudig - Freelance Writer June 11, 2025 Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987 Andrea Legge / © NYPL Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story. One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots. Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957 Martha Swope / © NYPL At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School. Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’” Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library. An ensemble of dancers in rehearsal for the stage production Cats in 1982 Martha Swope / © NYPL “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.” According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older, [Swope] was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.” Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar. Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986 Martha Swope / © NYPL It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.” Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.” Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space. From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988 Martha Swope / © NYPL Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera. Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.” Get the latest Travel & Culture stories in your inbox.
    0 Yorumlar 0 hisse senetleri
  • This Surprising Kitchen Trend Is Making Designers Ditch Tile

    Here at Country Living, we love to study trends, especially those with timeless appeal. As the Senior Homes and Style Editor, it's my job to track these trends and decide which ones are worth covering and which ones are not, which is exactly why I've been watching the rise of wood paneling the last few years. People are desperate to move away from cold, clinical minimalism and make their homes feel more welcoming and lived-in. I was surprised, though, when I started seeing more and more paneling in the kitchen—not just on the walls, but acting as a backsplash. Below, we're diving into everything you need to know about the material set to replace tile as the designer-preferred kitchen backsplash this year. Related Stories What Types of Wood Paneling Are Trending? Before we get too far, let's be clear: Tile backsplash isn't going anywhere any time soon, and I'm definitely not saying you should rip out all your tile and replace it with wood paneling just because it's popular. Wood paneling offers a fresh alternative to tile that adds a warm layer to a space that can otherwise feel sterile. It's been beloved as an easy way to add character to your walls for decades, and its foray into the kitchen shouldn't be a surprise as cottage kitchens become more and more popular both online and in real life. Before you toss out your tile samples, let's examine which types of paneling might be best for your kitchen. ShiplapLove it or hate it, shiplap is here to stay. This style, made popular by Chip and Joanna Gaines more than a decade ago, offers a classic look, making it perfect for homes regardless of their age or location. If you love this look but want something that feels less ubiquitous, avoid white shiplap and choose a warmer neutral, such as Interactive Cream by Sherwin-Williams or Rhine River by Benjamin Moore. Nickel Gap Paneling Think of nickel gap paneling, which gets its name from the consistent, nickel-width gap between each of the planks, as shiplap's older, more refined cousin. Unlike shiplap, which uses a type of connecting grove called a rabbet joint, nickel gap uses a classic tongue-and-groove joinery system. Once installed, the planks feel more elevated and purposeful than standard shiplap. While any type of wood can be used for nickel gap paneling, inexpensive woods, such as pine and poplar, or even MDF are popular options. BeadboardA longtime favorite in country kitchens, beadboard paneling is full of historic cottage charm.Because beadboard has a raised edge—the "bead" that gives it its name—it's a great way to add texture and a sense of history to a space, and might be the best option if you're trying to add age to a newly built kitchen. Related StoryIs a Wood Backsplash Safe?If you love the lived-in look, then wood backsplash is perfect for you, and when installed with care and paired with the right materials, wood is just as safe as tile. If you have a gas stove, always pair wood backsplash with a fire-safe material such as marble or quartz. This not only keeps your wood backsplash in pristine condition but also protects it from any open flame. If you're using an induction cooktop, feel free to leave your wood backsplash uncovered. Related StoryExamples of Wood BacksplashBecky Luigart-Stayner for Country LivingBeadboard backsplash adds a cozy twist to this gingham-filled kitchen’s stove cove from designer Trinity Holmes. Stacy Zarin GoldbergIn designer Molly Singer’s kitchen, simple wood paneling adds country charm. Ali Harper for Country LivingIn this Alabama river cottage, designed by Jensen Killen, wood-planked walls were painted a creamy white and run horizontally throughout the kitchen. Mike D'AvelloKnotty pine adds country charm to this kitchen designed by HGTV star Jenny Marrs.Becky Luigart-Stayner for Country LivingIn Maribeth Jones’ Alabama kitchen, yellow walls and paneling add cottage charm when paired with painted floors and a fruit-inspired wallpaper. Related StoriesAnna LoganSenior Homes & Style EditorAnna Logan is the Senior Homes & Style Editor at Country Living, where she has been covering all things home design, including sharing exclusive looks at beautifully designed country kitchens, producing home features, writing everything from timely trend reports on the latest viral aesthetic to expert-driven explainers on must-read topics, and rounding up pretty much everything you’ve ever wanted to know about paint, since 2021. Anna has spent the last seven years covering every aspect of the design industry, previously having written for Traditional Home, One Kings Lane, House Beautiful, and Frederic. She holds a degree in journalism from the University of Georgia. When she’s not working, Anna can either be found digging around her flower garden or through the dusty shelves of an antique shop. Follow her adventures, or, more importantly, those of her three-year-old Maltese and official Country Living Pet Lab tester, Teddy, on Instagram.
     
    #this #surprising #kitchen #trend #making
    This Surprising Kitchen Trend Is Making Designers Ditch Tile
    Here at Country Living, we love to study trends, especially those with timeless appeal. As the Senior Homes and Style Editor, it's my job to track these trends and decide which ones are worth covering and which ones are not, which is exactly why I've been watching the rise of wood paneling the last few years. People are desperate to move away from cold, clinical minimalism and make their homes feel more welcoming and lived-in. I was surprised, though, when I started seeing more and more paneling in the kitchen—not just on the walls, but acting as a backsplash. Below, we're diving into everything you need to know about the material set to replace tile as the designer-preferred kitchen backsplash this year. Related Stories What Types of Wood Paneling Are Trending? Before we get too far, let's be clear: Tile backsplash isn't going anywhere any time soon, and I'm definitely not saying you should rip out all your tile and replace it with wood paneling just because it's popular. Wood paneling offers a fresh alternative to tile that adds a warm layer to a space that can otherwise feel sterile. It's been beloved as an easy way to add character to your walls for decades, and its foray into the kitchen shouldn't be a surprise as cottage kitchens become more and more popular both online and in real life. Before you toss out your tile samples, let's examine which types of paneling might be best for your kitchen. ShiplapLove it or hate it, shiplap is here to stay. This style, made popular by Chip and Joanna Gaines more than a decade ago, offers a classic look, making it perfect for homes regardless of their age or location. If you love this look but want something that feels less ubiquitous, avoid white shiplap and choose a warmer neutral, such as Interactive Cream by Sherwin-Williams or Rhine River by Benjamin Moore. Nickel Gap Paneling Think of nickel gap paneling, which gets its name from the consistent, nickel-width gap between each of the planks, as shiplap's older, more refined cousin. Unlike shiplap, which uses a type of connecting grove called a rabbet joint, nickel gap uses a classic tongue-and-groove joinery system. Once installed, the planks feel more elevated and purposeful than standard shiplap. While any type of wood can be used for nickel gap paneling, inexpensive woods, such as pine and poplar, or even MDF are popular options. BeadboardA longtime favorite in country kitchens, beadboard paneling is full of historic cottage charm.Because beadboard has a raised edge—the "bead" that gives it its name—it's a great way to add texture and a sense of history to a space, and might be the best option if you're trying to add age to a newly built kitchen. Related StoryIs a Wood Backsplash Safe?If you love the lived-in look, then wood backsplash is perfect for you, and when installed with care and paired with the right materials, wood is just as safe as tile. If you have a gas stove, always pair wood backsplash with a fire-safe material such as marble or quartz. This not only keeps your wood backsplash in pristine condition but also protects it from any open flame. If you're using an induction cooktop, feel free to leave your wood backsplash uncovered. Related StoryExamples of Wood BacksplashBecky Luigart-Stayner for Country LivingBeadboard backsplash adds a cozy twist to this gingham-filled kitchen’s stove cove from designer Trinity Holmes. Stacy Zarin GoldbergIn designer Molly Singer’s kitchen, simple wood paneling adds country charm. Ali Harper for Country LivingIn this Alabama river cottage, designed by Jensen Killen, wood-planked walls were painted a creamy white and run horizontally throughout the kitchen. Mike D'AvelloKnotty pine adds country charm to this kitchen designed by HGTV star Jenny Marrs.Becky Luigart-Stayner for Country LivingIn Maribeth Jones’ Alabama kitchen, yellow walls and paneling add cottage charm when paired with painted floors and a fruit-inspired wallpaper. Related StoriesAnna LoganSenior Homes & Style EditorAnna Logan is the Senior Homes & Style Editor at Country Living, where she has been covering all things home design, including sharing exclusive looks at beautifully designed country kitchens, producing home features, writing everything from timely trend reports on the latest viral aesthetic to expert-driven explainers on must-read topics, and rounding up pretty much everything you’ve ever wanted to know about paint, since 2021. Anna has spent the last seven years covering every aspect of the design industry, previously having written for Traditional Home, One Kings Lane, House Beautiful, and Frederic. She holds a degree in journalism from the University of Georgia. When she’s not working, Anna can either be found digging around her flower garden or through the dusty shelves of an antique shop. Follow her adventures, or, more importantly, those of her three-year-old Maltese and official Country Living Pet Lab tester, Teddy, on Instagram.   #this #surprising #kitchen #trend #making
    WWW.COUNTRYLIVING.COM
    This Surprising Kitchen Trend Is Making Designers Ditch Tile
    Here at Country Living, we love to study trends, especially those with timeless appeal. As the Senior Homes and Style Editor, it's my job to track these trends and decide which ones are worth covering and which ones are not, which is exactly why I've been watching the rise of wood paneling the last few years. People are desperate to move away from cold, clinical minimalism and make their homes feel more welcoming and lived-in. I was surprised, though, when I started seeing more and more paneling in the kitchen—not just on the walls, but acting as a backsplash. Below, we're diving into everything you need to know about the material set to replace tile as the designer-preferred kitchen backsplash this year. Related Stories What Types of Wood Paneling Are Trending? Before we get too far, let's be clear: Tile backsplash isn't going anywhere any time soon, and I'm definitely not saying you should rip out all your tile and replace it with wood paneling just because it's popular. Wood paneling offers a fresh alternative to tile that adds a warm layer to a space that can otherwise feel sterile. It's been beloved as an easy way to add character to your walls for decades, and its foray into the kitchen shouldn't be a surprise as cottage kitchens become more and more popular both online and in real life. Before you toss out your tile samples, let's examine which types of paneling might be best for your kitchen. ShiplapLove it or hate it, shiplap is here to stay. This style, made popular by Chip and Joanna Gaines more than a decade ago, offers a classic look, making it perfect for homes regardless of their age or location. If you love this look but want something that feels less ubiquitous, avoid white shiplap and choose a warmer neutral, such as Interactive Cream by Sherwin-Williams or Rhine River by Benjamin Moore. Nickel Gap Paneling Think of nickel gap paneling, which gets its name from the consistent, nickel-width gap between each of the planks, as shiplap's older, more refined cousin. Unlike shiplap, which uses a type of connecting grove called a rabbet joint, nickel gap uses a classic tongue-and-groove joinery system. Once installed, the planks feel more elevated and purposeful than standard shiplap. While any type of wood can be used for nickel gap paneling, inexpensive woods, such as pine and poplar, or even MDF are popular options. BeadboardA longtime favorite in country kitchens, beadboard paneling is full of historic cottage charm. (My two cents: If a design element was good enough for the Victorians, it's good enough for me!) Because beadboard has a raised edge—the "bead" that gives it its name—it's a great way to add texture and a sense of history to a space, and might be the best option if you're trying to add age to a newly built kitchen. Related StoryIs a Wood Backsplash Safe?If you love the lived-in look, then wood backsplash is perfect for you, and when installed with care and paired with the right materials, wood is just as safe as tile. If you have a gas stove, always pair wood backsplash with a fire-safe material such as marble or quartz. This not only keeps your wood backsplash in pristine condition but also protects it from any open flame. If you're using an induction cooktop, feel free to leave your wood backsplash uncovered. Related StoryExamples of Wood BacksplashBecky Luigart-Stayner for Country LivingBeadboard backsplash adds a cozy twist to this gingham-filled kitchen’s stove cove from designer Trinity Holmes. Stacy Zarin GoldbergIn designer Molly Singer’s kitchen, simple wood paneling adds country charm. Ali Harper for Country LivingIn this Alabama river cottage, designed by Jensen Killen, wood-planked walls were painted a creamy white and run horizontally throughout the kitchen. Mike D'AvelloKnotty pine adds country charm to this kitchen designed by HGTV star Jenny Marrs.Becky Luigart-Stayner for Country LivingIn Maribeth Jones’ Alabama kitchen, yellow walls and paneling add cottage charm when paired with painted floors and a fruit-inspired wallpaper. Related StoriesAnna LoganSenior Homes & Style EditorAnna Logan is the Senior Homes & Style Editor at Country Living, where she has been covering all things home design, including sharing exclusive looks at beautifully designed country kitchens, producing home features, writing everything from timely trend reports on the latest viral aesthetic to expert-driven explainers on must-read topics, and rounding up pretty much everything you’ve ever wanted to know about paint, since 2021. Anna has spent the last seven years covering every aspect of the design industry, previously having written for Traditional Home, One Kings Lane, House Beautiful, and Frederic. She holds a degree in journalism from the University of Georgia. When she’s not working, Anna can either be found digging around her flower garden or through the dusty shelves of an antique shop. Follow her adventures, or, more importantly, those of her three-year-old Maltese and official Country Living Pet Lab tester, Teddy, on Instagram.  
    0 Yorumlar 0 hisse senetleri
  • Manus has kick-started an AI agent boom in China

    Last year, China saw a boom in foundation models, the do-everything large language models that underpin the AI revolution. This year, the focus has shifted to AI agents—systems that are less about responding to users’ queries and more about autonomously accomplishing things for them. 

    There are now a host of Chinese startups building these general-purpose digital tools, which can answer emails, browse the internet to plan vacations, and even design an interactive website. Many of these have emerged in just the last two months, following in the footsteps of Manus—a general AI agent that sparked weeks of social media frenzy for invite codes after its limited-release launch in early March. 

    These emerging AI agents aren’t large language models themselves. Instead, they’re built on top of them, using a workflow-based structure designed to get things done. A lot of these systems also introduce a different way of interacting with AI. Rather than just chatting back and forth with users, they are optimized for managing and executing multistep tasks—booking flights, managing schedules, conducting research—by using external tools and remembering instructions. 

    China could take the lead on building these kinds of agents. The country’s tightly integrated app ecosystems, rapid product cycles, and digitally fluent user base could provide a favorable environment for embedding AI into daily life. 

    For now, its leading AI agent startups are focusing their attention on the global market, because the best Western models don’t operate inside China’s firewalls. But that could change soon: Tech giants like ByteDance and Tencent are preparing their own AI agents that could bake automation directly into their native super-apps, pulling data from their vast ecosystem of programs that dominate many aspects of daily life in the country. 

    As the race to define what a useful AI agent looks like unfolds, a mix of ambitious startups and entrenched tech giants are now testing how these tools might actually work in practice—and for whom.

    Set the standard

    It’s been a whirlwind few months for Manus, which was developed by the Wuhan-based startup Butterfly Effect. The company raised million in a funding round led by the US venture capital firm Benchmark, took the product on an ambitious global roadshow, and hired dozens of new employees. 

    Even before registration opened to the public in May, Manus had become a reference point for what a broad, consumer‑oriented AI agent should accomplish. Rather than handling narrow chores for businesses, this “general” agent is designed to be able to help with everyday tasks like trip planning, stock comparison, or your kid’s school project. 

    Unlike previous AI agents, Manus uses a browser-based sandbox that lets users supervise the agent like an intern, watching in real time as it scrolls through web pages, reads articles, or codes actions. It also proactively asks clarifying questions, supports long-term memory that would serve as context for future tasks.

    “Manus represents a promising product experience for AI agents,” says Ang Li, cofounder and CEO of Simular, a startup based in Palo Alto, California, that’s building computer use agents, AI agents that control a virtual computer. “I believe Chinese startups have a huge advantage when it comes to designing consumer products, thanks to cutthroat domestic competition that leads to fast execution and greater attention to product details.”

    In the case of Manus, the competition is moving fast. Two of the most buzzy follow‑ups, Genspark and Flowith, for example, are already boasting benchmark scores that match or edge past Manus’s. 

    Genspark, led by former Baidu executives Eric Jing and Kay Zhu, links many small “super agents” through what it calls multi‑component prompting. The agent can switch among several large language models, accepts both images and text, and carries out tasks from making slide decks to placing phone calls. Whereas Manus relies heavily on Browser Use, a popular open-source product that lets agents operate a web browser in a virtual window like a human, Genspark directly integrates with a wide array of tools and APIs. Launched in April, the company says that it already has over 5 million users and over million in yearly revenue.

    Flowith, the work of a young team that first grabbed public attention in April 2025 at a developer event hosted by the popular social media app Xiaohongshu, takes a different tack. Marketed as an “infinite agent,” it opens on a blank canvas where each question becomes a node on a branching map. Users can backtrack, take new branches, and store results in personal or sharable “knowledge gardens”—a design that feels more like project management softwarethan a typical chat interface. Every inquiry or task builds its own mind-map-like graph, encouraging a more nonlinear and creative interaction with AI. Flowith’s core agent, NEO, runs in the cloud and can perform scheduled tasks like sending emails and compiling files. The founders want the app to be a “knowledge marketbase”, and aims to tap into the social aspect of AI with the aspiration of becoming “the OnlyFans of AI knowledge creators”.

    What they also share with Manus is the global ambition. Both Genspark and Flowith have stated that their primary focus is the international market.

    A global address

    Startups like Manus, Genspark, and Flowith—though founded by Chinese entrepreneurs—could blend seamlessly into the global tech scene and compete effectively abroad. Founders, investors, and analysts that MIT Technology Review has spoken to believe Chinese companies are moving fast, executing well, and quickly coming up with new products. 

    Money reinforces the pull to launch overseas. Customers there pay more, and there are plenty to go around. “You can price in USD, and with the exchange rate that’s a sevenfold multiplier,” Manus cofounder Xiao Hong quipped on a podcast. “Even if we’re only operating at 10% power because of cultural differences overseas, we’ll still make more than in China.”

    But creating the same functionality in China is a challenge. Major US AI companies including OpenAI and Anthropic have opted out of mainland China because of geopolitical risks and challenges with regulatory compliance. Their absence initially created a black market as users resorted to VPNs and third-party mirrors to access tools like ChatGPT and Claude. That vacuum has since been filled by a new wave of Chinese chatbots—DeepSeek, Doubao, Kimi—but the appetite for foreign models hasn’t gone away. 

    Manus, for example, uses Anthropic’s Claude Sonnet—widely considered the top model for agentic tasks. Manus cofounder Zhang Tao has repeatedly praised Claude’s ability to juggle tools, remember contexts, and hold multi‑round conversations—all crucial for turning chatty software into an effective executive assistant.

    But the company’s use of Sonnet has made its agent functionally unusable inside China without a VPN. If you open Manus from a mainland IP address, you’ll see a notice explaining that the team is “working on integrating Qwen’s model,” a special local version that is built on top of Alibaba’s open-source model. 

    An engineer overseeing ByteDance’s work on developing an agent, who spoke to MIT Technology Review anonymously to avoid sanction, said that the absence of Claude Sonnet models “limits everything we do in China.” DeepSeek’s open models, he added, still hallucinate too often and lack training on real‑world workflows. Developers we spoke with rank Alibaba’s Qwen series as the best domestic alternative, yet most say that switching to Qwen knocks performance down a notch.

    Jiaxin Pei, a postdoctoral researcher at Stanford’s Institute for Human‑Centered AI, thinks that gap will close: “Building agentic capabilities in base LLMs has become a key focus for many LLM builders, and once people realize the value of this, it will only be a matter of time.”

    For now, Manus is doubling down on audiences it can already serve. In a written response, the company said its “primary focus is overseas expansion,” noting that new offices in San Francisco, Singapore, and Tokyo have opened in the past month.

    A super‑app approach

    Although the concept of AI agents is still relatively new, the consumer-facing AI app market in China is already crowded with major tech players. DeepSeek remains the most widely used, while ByteDance’s Doubao and Moonshot’s Kimi have also become household names. However, most of these apps are still optimized for chat and entertainment rather than task execution. This gap in the local market has pushed China’s big tech firms to roll out their own user-facing agents, though early versions remain uneven in quality and rough around the edges. 

    ByteDance is testing Coze Space, an AI agent based on its own Doubao model family that lets users toggle between “plan” and “execute” modes, so they can either directly guide the agent’s actions or step back and watch it work autonomously. It connects up to 14 popular apps, including GitHub, Notion, and the company’s own Lark office suite. Early reviews say the tool can feel clunky and has a high failure rate, but it clearly aims to match what Manus offers.

    Meanwhile, Zhipu AI has released a free agent called AutoGLM Rumination, built on its proprietary ChatGLM models. Shanghai‑based Minimax has launched Minimax Agent. Both products look almost identical to Manus and demo basic tasks such as building a simple website, planning a trip, making a small Flash game, or running quick data analysis.

    Despite the limited usability of most general AI agents launched within China, big companies have plans to change that. During a May 15 earnings call, Tencent president Liu Zhiping teased an agent that would weave automation directly into China’s most ubiquitous app, WeChat. 

    Considered the original super-app, WeChat already handles messaging, mobile payments, news, and millions of mini‑programs that act like embedded apps. These programs give Tencent, its developer, access to data from millions of services that pervade everyday life in China, an advantage most competitors can only envy.

    Historically, China’s consumer internet has splintered into competing walled gardens—share a Taobao link in WeChat and it resolves as plaintext, not a preview card. Unlike the more interoperable Western internet, China’s tech giants have long resisted integration with one another, choosing to wage platform war at the expense of a seamless user experience.

    But the use of mini‑programs has given WeChat unprecedented reach across services that once resisted interoperability, from gym bookings to grocery orders. An agent able to roam that ecosystem could bypass the integration headaches dogging independent startups.

    Alibaba, the e-commerce giant behind the Qwen model series, has been a front-runner in China’s AI race but has been slower to release consumer-facing products. Even though Qwen was the most downloaded open-source model on Hugging Face in 2024, it didn’t power a dedicated chatbot app until early 2025. In March, Alibaba rebranded its cloud storage and search app Quark into an all-in-one AI search tool. By June, Quark had introduced DeepResearch—a new mode that marks its most agent-like effort to date. 

    ByteDance and Alibaba did not reply to MIT Technology Review’s request for comments.

    “Historically, Chinese tech products tend to pursue the all-in-one, super-app approach, and the latest Chinese AI agents reflect just that,” says Li of Simular, who previously worked at Google DeepMind on AI-enabled work automation. “In contrast, AI agents in the US are more focused on serving specific verticals.”

    Pei, the researcher at Stanford, says that existing tech giants could have a huge advantage in bringing the vision of general AI agents to life—especially those with built-in integration across services. “The customer-facing AI agent market is still very early, with tons of problems like authentication and liability,” he says. “But companies that already operate across a wide range of services have a natural advantage in deploying agents at scale.”
    #manus #has #kickstarted #agent #boom
    Manus has kick-started an AI agent boom in China
    Last year, China saw a boom in foundation models, the do-everything large language models that underpin the AI revolution. This year, the focus has shifted to AI agents—systems that are less about responding to users’ queries and more about autonomously accomplishing things for them.  There are now a host of Chinese startups building these general-purpose digital tools, which can answer emails, browse the internet to plan vacations, and even design an interactive website. Many of these have emerged in just the last two months, following in the footsteps of Manus—a general AI agent that sparked weeks of social media frenzy for invite codes after its limited-release launch in early March.  These emerging AI agents aren’t large language models themselves. Instead, they’re built on top of them, using a workflow-based structure designed to get things done. A lot of these systems also introduce a different way of interacting with AI. Rather than just chatting back and forth with users, they are optimized for managing and executing multistep tasks—booking flights, managing schedules, conducting research—by using external tools and remembering instructions.  China could take the lead on building these kinds of agents. The country’s tightly integrated app ecosystems, rapid product cycles, and digitally fluent user base could provide a favorable environment for embedding AI into daily life.  For now, its leading AI agent startups are focusing their attention on the global market, because the best Western models don’t operate inside China’s firewalls. But that could change soon: Tech giants like ByteDance and Tencent are preparing their own AI agents that could bake automation directly into their native super-apps, pulling data from their vast ecosystem of programs that dominate many aspects of daily life in the country.  As the race to define what a useful AI agent looks like unfolds, a mix of ambitious startups and entrenched tech giants are now testing how these tools might actually work in practice—and for whom. Set the standard It’s been a whirlwind few months for Manus, which was developed by the Wuhan-based startup Butterfly Effect. The company raised million in a funding round led by the US venture capital firm Benchmark, took the product on an ambitious global roadshow, and hired dozens of new employees.  Even before registration opened to the public in May, Manus had become a reference point for what a broad, consumer‑oriented AI agent should accomplish. Rather than handling narrow chores for businesses, this “general” agent is designed to be able to help with everyday tasks like trip planning, stock comparison, or your kid’s school project.  Unlike previous AI agents, Manus uses a browser-based sandbox that lets users supervise the agent like an intern, watching in real time as it scrolls through web pages, reads articles, or codes actions. It also proactively asks clarifying questions, supports long-term memory that would serve as context for future tasks. “Manus represents a promising product experience for AI agents,” says Ang Li, cofounder and CEO of Simular, a startup based in Palo Alto, California, that’s building computer use agents, AI agents that control a virtual computer. “I believe Chinese startups have a huge advantage when it comes to designing consumer products, thanks to cutthroat domestic competition that leads to fast execution and greater attention to product details.” In the case of Manus, the competition is moving fast. Two of the most buzzy follow‑ups, Genspark and Flowith, for example, are already boasting benchmark scores that match or edge past Manus’s.  Genspark, led by former Baidu executives Eric Jing and Kay Zhu, links many small “super agents” through what it calls multi‑component prompting. The agent can switch among several large language models, accepts both images and text, and carries out tasks from making slide decks to placing phone calls. Whereas Manus relies heavily on Browser Use, a popular open-source product that lets agents operate a web browser in a virtual window like a human, Genspark directly integrates with a wide array of tools and APIs. Launched in April, the company says that it already has over 5 million users and over million in yearly revenue. Flowith, the work of a young team that first grabbed public attention in April 2025 at a developer event hosted by the popular social media app Xiaohongshu, takes a different tack. Marketed as an “infinite agent,” it opens on a blank canvas where each question becomes a node on a branching map. Users can backtrack, take new branches, and store results in personal or sharable “knowledge gardens”—a design that feels more like project management softwarethan a typical chat interface. Every inquiry or task builds its own mind-map-like graph, encouraging a more nonlinear and creative interaction with AI. Flowith’s core agent, NEO, runs in the cloud and can perform scheduled tasks like sending emails and compiling files. The founders want the app to be a “knowledge marketbase”, and aims to tap into the social aspect of AI with the aspiration of becoming “the OnlyFans of AI knowledge creators”. What they also share with Manus is the global ambition. Both Genspark and Flowith have stated that their primary focus is the international market. A global address Startups like Manus, Genspark, and Flowith—though founded by Chinese entrepreneurs—could blend seamlessly into the global tech scene and compete effectively abroad. Founders, investors, and analysts that MIT Technology Review has spoken to believe Chinese companies are moving fast, executing well, and quickly coming up with new products.  Money reinforces the pull to launch overseas. Customers there pay more, and there are plenty to go around. “You can price in USD, and with the exchange rate that’s a sevenfold multiplier,” Manus cofounder Xiao Hong quipped on a podcast. “Even if we’re only operating at 10% power because of cultural differences overseas, we’ll still make more than in China.” But creating the same functionality in China is a challenge. Major US AI companies including OpenAI and Anthropic have opted out of mainland China because of geopolitical risks and challenges with regulatory compliance. Their absence initially created a black market as users resorted to VPNs and third-party mirrors to access tools like ChatGPT and Claude. That vacuum has since been filled by a new wave of Chinese chatbots—DeepSeek, Doubao, Kimi—but the appetite for foreign models hasn’t gone away.  Manus, for example, uses Anthropic’s Claude Sonnet—widely considered the top model for agentic tasks. Manus cofounder Zhang Tao has repeatedly praised Claude’s ability to juggle tools, remember contexts, and hold multi‑round conversations—all crucial for turning chatty software into an effective executive assistant. But the company’s use of Sonnet has made its agent functionally unusable inside China without a VPN. If you open Manus from a mainland IP address, you’ll see a notice explaining that the team is “working on integrating Qwen’s model,” a special local version that is built on top of Alibaba’s open-source model.  An engineer overseeing ByteDance’s work on developing an agent, who spoke to MIT Technology Review anonymously to avoid sanction, said that the absence of Claude Sonnet models “limits everything we do in China.” DeepSeek’s open models, he added, still hallucinate too often and lack training on real‑world workflows. Developers we spoke with rank Alibaba’s Qwen series as the best domestic alternative, yet most say that switching to Qwen knocks performance down a notch. Jiaxin Pei, a postdoctoral researcher at Stanford’s Institute for Human‑Centered AI, thinks that gap will close: “Building agentic capabilities in base LLMs has become a key focus for many LLM builders, and once people realize the value of this, it will only be a matter of time.” For now, Manus is doubling down on audiences it can already serve. In a written response, the company said its “primary focus is overseas expansion,” noting that new offices in San Francisco, Singapore, and Tokyo have opened in the past month. A super‑app approach Although the concept of AI agents is still relatively new, the consumer-facing AI app market in China is already crowded with major tech players. DeepSeek remains the most widely used, while ByteDance’s Doubao and Moonshot’s Kimi have also become household names. However, most of these apps are still optimized for chat and entertainment rather than task execution. This gap in the local market has pushed China’s big tech firms to roll out their own user-facing agents, though early versions remain uneven in quality and rough around the edges.  ByteDance is testing Coze Space, an AI agent based on its own Doubao model family that lets users toggle between “plan” and “execute” modes, so they can either directly guide the agent’s actions or step back and watch it work autonomously. It connects up to 14 popular apps, including GitHub, Notion, and the company’s own Lark office suite. Early reviews say the tool can feel clunky and has a high failure rate, but it clearly aims to match what Manus offers. Meanwhile, Zhipu AI has released a free agent called AutoGLM Rumination, built on its proprietary ChatGLM models. Shanghai‑based Minimax has launched Minimax Agent. Both products look almost identical to Manus and demo basic tasks such as building a simple website, planning a trip, making a small Flash game, or running quick data analysis. Despite the limited usability of most general AI agents launched within China, big companies have plans to change that. During a May 15 earnings call, Tencent president Liu Zhiping teased an agent that would weave automation directly into China’s most ubiquitous app, WeChat.  Considered the original super-app, WeChat already handles messaging, mobile payments, news, and millions of mini‑programs that act like embedded apps. These programs give Tencent, its developer, access to data from millions of services that pervade everyday life in China, an advantage most competitors can only envy. Historically, China’s consumer internet has splintered into competing walled gardens—share a Taobao link in WeChat and it resolves as plaintext, not a preview card. Unlike the more interoperable Western internet, China’s tech giants have long resisted integration with one another, choosing to wage platform war at the expense of a seamless user experience. But the use of mini‑programs has given WeChat unprecedented reach across services that once resisted interoperability, from gym bookings to grocery orders. An agent able to roam that ecosystem could bypass the integration headaches dogging independent startups. Alibaba, the e-commerce giant behind the Qwen model series, has been a front-runner in China’s AI race but has been slower to release consumer-facing products. Even though Qwen was the most downloaded open-source model on Hugging Face in 2024, it didn’t power a dedicated chatbot app until early 2025. In March, Alibaba rebranded its cloud storage and search app Quark into an all-in-one AI search tool. By June, Quark had introduced DeepResearch—a new mode that marks its most agent-like effort to date.  ByteDance and Alibaba did not reply to MIT Technology Review’s request for comments. “Historically, Chinese tech products tend to pursue the all-in-one, super-app approach, and the latest Chinese AI agents reflect just that,” says Li of Simular, who previously worked at Google DeepMind on AI-enabled work automation. “In contrast, AI agents in the US are more focused on serving specific verticals.” Pei, the researcher at Stanford, says that existing tech giants could have a huge advantage in bringing the vision of general AI agents to life—especially those with built-in integration across services. “The customer-facing AI agent market is still very early, with tons of problems like authentication and liability,” he says. “But companies that already operate across a wide range of services have a natural advantage in deploying agents at scale.” #manus #has #kickstarted #agent #boom
    WWW.TECHNOLOGYREVIEW.COM
    Manus has kick-started an AI agent boom in China
    Last year, China saw a boom in foundation models, the do-everything large language models that underpin the AI revolution. This year, the focus has shifted to AI agents—systems that are less about responding to users’ queries and more about autonomously accomplishing things for them.  There are now a host of Chinese startups building these general-purpose digital tools, which can answer emails, browse the internet to plan vacations, and even design an interactive website. Many of these have emerged in just the last two months, following in the footsteps of Manus—a general AI agent that sparked weeks of social media frenzy for invite codes after its limited-release launch in early March.  These emerging AI agents aren’t large language models themselves. Instead, they’re built on top of them, using a workflow-based structure designed to get things done. A lot of these systems also introduce a different way of interacting with AI. Rather than just chatting back and forth with users, they are optimized for managing and executing multistep tasks—booking flights, managing schedules, conducting research—by using external tools and remembering instructions.  China could take the lead on building these kinds of agents. The country’s tightly integrated app ecosystems, rapid product cycles, and digitally fluent user base could provide a favorable environment for embedding AI into daily life.  For now, its leading AI agent startups are focusing their attention on the global market, because the best Western models don’t operate inside China’s firewalls. But that could change soon: Tech giants like ByteDance and Tencent are preparing their own AI agents that could bake automation directly into their native super-apps, pulling data from their vast ecosystem of programs that dominate many aspects of daily life in the country.  As the race to define what a useful AI agent looks like unfolds, a mix of ambitious startups and entrenched tech giants are now testing how these tools might actually work in practice—and for whom. Set the standard It’s been a whirlwind few months for Manus, which was developed by the Wuhan-based startup Butterfly Effect. The company raised $75 million in a funding round led by the US venture capital firm Benchmark, took the product on an ambitious global roadshow, and hired dozens of new employees.  Even before registration opened to the public in May, Manus had become a reference point for what a broad, consumer‑oriented AI agent should accomplish. Rather than handling narrow chores for businesses, this “general” agent is designed to be able to help with everyday tasks like trip planning, stock comparison, or your kid’s school project.  Unlike previous AI agents, Manus uses a browser-based sandbox that lets users supervise the agent like an intern, watching in real time as it scrolls through web pages, reads articles, or codes actions. It also proactively asks clarifying questions, supports long-term memory that would serve as context for future tasks. “Manus represents a promising product experience for AI agents,” says Ang Li, cofounder and CEO of Simular, a startup based in Palo Alto, California, that’s building computer use agents, AI agents that control a virtual computer. “I believe Chinese startups have a huge advantage when it comes to designing consumer products, thanks to cutthroat domestic competition that leads to fast execution and greater attention to product details.” In the case of Manus, the competition is moving fast. Two of the most buzzy follow‑ups, Genspark and Flowith, for example, are already boasting benchmark scores that match or edge past Manus’s.  Genspark, led by former Baidu executives Eric Jing and Kay Zhu, links many small “super agents” through what it calls multi‑component prompting. The agent can switch among several large language models, accepts both images and text, and carries out tasks from making slide decks to placing phone calls. Whereas Manus relies heavily on Browser Use, a popular open-source product that lets agents operate a web browser in a virtual window like a human, Genspark directly integrates with a wide array of tools and APIs. Launched in April, the company says that it already has over 5 million users and over $36 million in yearly revenue. Flowith, the work of a young team that first grabbed public attention in April 2025 at a developer event hosted by the popular social media app Xiaohongshu, takes a different tack. Marketed as an “infinite agent,” it opens on a blank canvas where each question becomes a node on a branching map. Users can backtrack, take new branches, and store results in personal or sharable “knowledge gardens”—a design that feels more like project management software (think Notion) than a typical chat interface. Every inquiry or task builds its own mind-map-like graph, encouraging a more nonlinear and creative interaction with AI. Flowith’s core agent, NEO, runs in the cloud and can perform scheduled tasks like sending emails and compiling files. The founders want the app to be a “knowledge marketbase”, and aims to tap into the social aspect of AI with the aspiration of becoming “the OnlyFans of AI knowledge creators”. What they also share with Manus is the global ambition. Both Genspark and Flowith have stated that their primary focus is the international market. A global address Startups like Manus, Genspark, and Flowith—though founded by Chinese entrepreneurs—could blend seamlessly into the global tech scene and compete effectively abroad. Founders, investors, and analysts that MIT Technology Review has spoken to believe Chinese companies are moving fast, executing well, and quickly coming up with new products.  Money reinforces the pull to launch overseas. Customers there pay more, and there are plenty to go around. “You can price in USD, and with the exchange rate that’s a sevenfold multiplier,” Manus cofounder Xiao Hong quipped on a podcast. “Even if we’re only operating at 10% power because of cultural differences overseas, we’ll still make more than in China.” But creating the same functionality in China is a challenge. Major US AI companies including OpenAI and Anthropic have opted out of mainland China because of geopolitical risks and challenges with regulatory compliance. Their absence initially created a black market as users resorted to VPNs and third-party mirrors to access tools like ChatGPT and Claude. That vacuum has since been filled by a new wave of Chinese chatbots—DeepSeek, Doubao, Kimi—but the appetite for foreign models hasn’t gone away.  Manus, for example, uses Anthropic’s Claude Sonnet—widely considered the top model for agentic tasks. Manus cofounder Zhang Tao has repeatedly praised Claude’s ability to juggle tools, remember contexts, and hold multi‑round conversations—all crucial for turning chatty software into an effective executive assistant. But the company’s use of Sonnet has made its agent functionally unusable inside China without a VPN. If you open Manus from a mainland IP address, you’ll see a notice explaining that the team is “working on integrating Qwen’s model,” a special local version that is built on top of Alibaba’s open-source model.  An engineer overseeing ByteDance’s work on developing an agent, who spoke to MIT Technology Review anonymously to avoid sanction, said that the absence of Claude Sonnet models “limits everything we do in China.” DeepSeek’s open models, he added, still hallucinate too often and lack training on real‑world workflows. Developers we spoke with rank Alibaba’s Qwen series as the best domestic alternative, yet most say that switching to Qwen knocks performance down a notch. Jiaxin Pei, a postdoctoral researcher at Stanford’s Institute for Human‑Centered AI, thinks that gap will close: “Building agentic capabilities in base LLMs has become a key focus for many LLM builders, and once people realize the value of this, it will only be a matter of time.” For now, Manus is doubling down on audiences it can already serve. In a written response, the company said its “primary focus is overseas expansion,” noting that new offices in San Francisco, Singapore, and Tokyo have opened in the past month. A super‑app approach Although the concept of AI agents is still relatively new, the consumer-facing AI app market in China is already crowded with major tech players. DeepSeek remains the most widely used, while ByteDance’s Doubao and Moonshot’s Kimi have also become household names. However, most of these apps are still optimized for chat and entertainment rather than task execution. This gap in the local market has pushed China’s big tech firms to roll out their own user-facing agents, though early versions remain uneven in quality and rough around the edges.  ByteDance is testing Coze Space, an AI agent based on its own Doubao model family that lets users toggle between “plan” and “execute” modes, so they can either directly guide the agent’s actions or step back and watch it work autonomously. It connects up to 14 popular apps, including GitHub, Notion, and the company’s own Lark office suite. Early reviews say the tool can feel clunky and has a high failure rate, but it clearly aims to match what Manus offers. Meanwhile, Zhipu AI has released a free agent called AutoGLM Rumination, built on its proprietary ChatGLM models. Shanghai‑based Minimax has launched Minimax Agent. Both products look almost identical to Manus and demo basic tasks such as building a simple website, planning a trip, making a small Flash game, or running quick data analysis. Despite the limited usability of most general AI agents launched within China, big companies have plans to change that. During a May 15 earnings call, Tencent president Liu Zhiping teased an agent that would weave automation directly into China’s most ubiquitous app, WeChat.  Considered the original super-app, WeChat already handles messaging, mobile payments, news, and millions of mini‑programs that act like embedded apps. These programs give Tencent, its developer, access to data from millions of services that pervade everyday life in China, an advantage most competitors can only envy. Historically, China’s consumer internet has splintered into competing walled gardens—share a Taobao link in WeChat and it resolves as plaintext, not a preview card. Unlike the more interoperable Western internet, China’s tech giants have long resisted integration with one another, choosing to wage platform war at the expense of a seamless user experience. But the use of mini‑programs has given WeChat unprecedented reach across services that once resisted interoperability, from gym bookings to grocery orders. An agent able to roam that ecosystem could bypass the integration headaches dogging independent startups. Alibaba, the e-commerce giant behind the Qwen model series, has been a front-runner in China’s AI race but has been slower to release consumer-facing products. Even though Qwen was the most downloaded open-source model on Hugging Face in 2024, it didn’t power a dedicated chatbot app until early 2025. In March, Alibaba rebranded its cloud storage and search app Quark into an all-in-one AI search tool. By June, Quark had introduced DeepResearch—a new mode that marks its most agent-like effort to date.  ByteDance and Alibaba did not reply to MIT Technology Review’s request for comments. “Historically, Chinese tech products tend to pursue the all-in-one, super-app approach, and the latest Chinese AI agents reflect just that,” says Li of Simular, who previously worked at Google DeepMind on AI-enabled work automation. “In contrast, AI agents in the US are more focused on serving specific verticals.” Pei, the researcher at Stanford, says that existing tech giants could have a huge advantage in bringing the vision of general AI agents to life—especially those with built-in integration across services. “The customer-facing AI agent market is still very early, with tons of problems like authentication and liability,” he says. “But companies that already operate across a wide range of services have a natural advantage in deploying agents at scale.”
    Like
    Love
    Wow
    Sad
    Angry
    421
    0 Yorumlar 0 hisse senetleri
  • Fogarty Finger flaunts its time-proven approach to projects big and small, which keeps clients coming back

    Behind 69 Walker Street’s facade in the Tribeca neighborhood of New York is a beehive of designers all striving toward the same goal: making great work, whether big or small, luxury residential or affordable housing, interiors or ground up. Fogarty Finger occupies three floors of the industrial loft building so ubiquitous in the neighborhood Robert De Niro made famous. The 130-person firm was founded in 2003 by Chris Fogarty and Robert Finger after the pair spent a decade working at SOM. Alexandra Cuber joined the office in 2014 and is a director in Fogarty Finger’s interiors studio. John Zimmer also teamed up as a director, following a stint in San Francisco. Despite having grown significantly, Fogarty Finger remains malleable, and responsive to ever-evolving industry trends. “About 80 percent of our clients are return clients,” Fogarty told AN. “Not only do clients often come back, they also recommend us. For the longest time we didn’t do business development because we didn’t need to. Now, at our size, we have to be a bit more thoughtful.”

    “One of many things that differentiates us from other, larger offices is that we’re still first-generation leadership,” Finger added. “We bring a very boutique approach to everything we do. Nobody has an expectation of what the firm does from generations past. This means we don’t have people above us managing us from the financial sideresponsible for many, many offices. This gives us more freedom in terms of design; we don’t come with the same overhead as many other firms have.”
    Astoria WestAstoria West, 2022
    A waterfront site Fogarty Finger recently negotiated is in Astoria, Queens. Astoria West is a handsome, 500-unit luxury residential complex that’s easily recognizable from Manhattan thanks to its bays, which jut out from the facade. The complex is broken up into three buildings with a shared courtyard. “We had a supertight budget,” Fogarty said. “The client came to us and said, ‘I need something I can recognize while standing in Manhattan.’ So we used dormer rules that allowed for these vertical portals into the apartment, which gave it an identity. Working on a very slim budget, a lot of detailing and thinking went into the windows, which change size, and the brick patterns. A lot of thought also went into the ground plane. We wanted to make apartments that people couldn’t look into from the sidewalk, without creating a soulless pedestrian experience outside.”
    Private Equity OfficePrivate Equity Office, 2024
    Fogarty Finger’s interiors studio collaborates with high-caliber real estate, financial services, and legal firms across the Eastern Seaboard. Recently, Fogarty Finger redesigned a space within an iconic Manhattan tower for a private equity firm; the result was a design that’s both inviting and dignifying. “Companies put a lot of thought into their address, but so often how they want their interiors to look and work is an open-ended conversation,” Finger said. “Real estate is becoming a very experience-driven industry, which is affecting everything.” For Fogarty Finger, helping financial services and legal practices arrive at a clear understanding of their identity is paramount, as was the case in this project, in which the client requested to stay anonymous. “We often start with visioning sessions,” Cuber said. “We ask clients to describe themselves in a few words, which often rattles them a bit. It’s so interesting taking these interviews and creating a space that reflects the client and how they want to present themselves.”

    The Eliza + Inwood Public LibraryThe Eliza + Inwood Public Library, 2024
    What to do with all of New York City’s publicly owned land has mayoral candidates talking. Amid ongoing debates, one thing seems clear: The new Eliza Apartments at the redeveloped Inwood Public Library in Manhattan is a very good precedent to use when negotiating city land moving forward. Mayoral candidates Zohran Mamdani, Zellnor Myrie, and Andrew Cuomo all alluded to the Eliza + Inwood Public Library in their housing plans as a case study to emulate. The mixed-use building opened earlier this year and was reviewed by AN. Fogarty Finger designed the ground-up building and its accompanying apartments, while Andrew Berman Architects ideated the ground-level library. “This is a truly multiuse building,” Zimmer said. “It has a community center that’s used for vocational training and STEM in the cellar, and there’s also a universal pre-K.”
    Nevins Landing in Gowanus, BrooklynNevins Landing, 2021–
    The Gowanus neighborhood is one of the largest, most significant development sites underway in New York today. Many high-profile firms are designing buildings near the polluted canal—a Superfund site in a yearslong cleanup—and Fogarty Finger is one of them. The firm is behind 320 and 340 Nevins Landing, on the banks of what many hope becomes the “eco-friendly Amsterdam of Brooklyn.” Fogarty Finger’s design at Nevins Landing can be understood as two separate plinths that front a shared plaza with towers above them. The facades mimic the old brick buildings in the neighborhood, with all of their idiosyncrasies. One of the other commendable features of Nevins Landing’s design is its retail component: Fogarty Finger created internal public corridors lined with a variety of small commercial spaces. This will ensure the ground level of Nevins Landing is a happening display of artists and coffee shops instead of, say, another Walgreens. “Our goal was to make a neighborhood,” Cuber said.
    #fogarty #finger #flaunts #its #timeproven
    Fogarty Finger flaunts its time-proven approach to projects big and small, which keeps clients coming back
    Behind 69 Walker Street’s facade in the Tribeca neighborhood of New York is a beehive of designers all striving toward the same goal: making great work, whether big or small, luxury residential or affordable housing, interiors or ground up. Fogarty Finger occupies three floors of the industrial loft building so ubiquitous in the neighborhood Robert De Niro made famous. The 130-person firm was founded in 2003 by Chris Fogarty and Robert Finger after the pair spent a decade working at SOM. Alexandra Cuber joined the office in 2014 and is a director in Fogarty Finger’s interiors studio. John Zimmer also teamed up as a director, following a stint in San Francisco. Despite having grown significantly, Fogarty Finger remains malleable, and responsive to ever-evolving industry trends. “About 80 percent of our clients are return clients,” Fogarty told AN. “Not only do clients often come back, they also recommend us. For the longest time we didn’t do business development because we didn’t need to. Now, at our size, we have to be a bit more thoughtful.” “One of many things that differentiates us from other, larger offices is that we’re still first-generation leadership,” Finger added. “We bring a very boutique approach to everything we do. Nobody has an expectation of what the firm does from generations past. This means we don’t have people above us managing us from the financial sideresponsible for many, many offices. This gives us more freedom in terms of design; we don’t come with the same overhead as many other firms have.” Astoria WestAstoria West, 2022 A waterfront site Fogarty Finger recently negotiated is in Astoria, Queens. Astoria West is a handsome, 500-unit luxury residential complex that’s easily recognizable from Manhattan thanks to its bays, which jut out from the facade. The complex is broken up into three buildings with a shared courtyard. “We had a supertight budget,” Fogarty said. “The client came to us and said, ‘I need something I can recognize while standing in Manhattan.’ So we used dormer rules that allowed for these vertical portals into the apartment, which gave it an identity. Working on a very slim budget, a lot of detailing and thinking went into the windows, which change size, and the brick patterns. A lot of thought also went into the ground plane. We wanted to make apartments that people couldn’t look into from the sidewalk, without creating a soulless pedestrian experience outside.” Private Equity OfficePrivate Equity Office, 2024 Fogarty Finger’s interiors studio collaborates with high-caliber real estate, financial services, and legal firms across the Eastern Seaboard. Recently, Fogarty Finger redesigned a space within an iconic Manhattan tower for a private equity firm; the result was a design that’s both inviting and dignifying. “Companies put a lot of thought into their address, but so often how they want their interiors to look and work is an open-ended conversation,” Finger said. “Real estate is becoming a very experience-driven industry, which is affecting everything.” For Fogarty Finger, helping financial services and legal practices arrive at a clear understanding of their identity is paramount, as was the case in this project, in which the client requested to stay anonymous. “We often start with visioning sessions,” Cuber said. “We ask clients to describe themselves in a few words, which often rattles them a bit. It’s so interesting taking these interviews and creating a space that reflects the client and how they want to present themselves.” The Eliza + Inwood Public LibraryThe Eliza + Inwood Public Library, 2024 What to do with all of New York City’s publicly owned land has mayoral candidates talking. Amid ongoing debates, one thing seems clear: The new Eliza Apartments at the redeveloped Inwood Public Library in Manhattan is a very good precedent to use when negotiating city land moving forward. Mayoral candidates Zohran Mamdani, Zellnor Myrie, and Andrew Cuomo all alluded to the Eliza + Inwood Public Library in their housing plans as a case study to emulate. The mixed-use building opened earlier this year and was reviewed by AN. Fogarty Finger designed the ground-up building and its accompanying apartments, while Andrew Berman Architects ideated the ground-level library. “This is a truly multiuse building,” Zimmer said. “It has a community center that’s used for vocational training and STEM in the cellar, and there’s also a universal pre-K.” Nevins Landing in Gowanus, BrooklynNevins Landing, 2021– The Gowanus neighborhood is one of the largest, most significant development sites underway in New York today. Many high-profile firms are designing buildings near the polluted canal—a Superfund site in a yearslong cleanup—and Fogarty Finger is one of them. The firm is behind 320 and 340 Nevins Landing, on the banks of what many hope becomes the “eco-friendly Amsterdam of Brooklyn.” Fogarty Finger’s design at Nevins Landing can be understood as two separate plinths that front a shared plaza with towers above them. The facades mimic the old brick buildings in the neighborhood, with all of their idiosyncrasies. One of the other commendable features of Nevins Landing’s design is its retail component: Fogarty Finger created internal public corridors lined with a variety of small commercial spaces. This will ensure the ground level of Nevins Landing is a happening display of artists and coffee shops instead of, say, another Walgreens. “Our goal was to make a neighborhood,” Cuber said. #fogarty #finger #flaunts #its #timeproven
    WWW.ARCHPAPER.COM
    Fogarty Finger flaunts its time-proven approach to projects big and small, which keeps clients coming back
    Behind 69 Walker Street’s facade in the Tribeca neighborhood of New York is a beehive of designers all striving toward the same goal: making great work, whether big or small, luxury residential or affordable housing, interiors or ground up. Fogarty Finger occupies three floors of the industrial loft building so ubiquitous in the neighborhood Robert De Niro made famous. The 130-person firm was founded in 2003 by Chris Fogarty and Robert Finger after the pair spent a decade working at SOM. Alexandra Cuber joined the office in 2014 and is a director in Fogarty Finger’s interiors studio. John Zimmer also teamed up as a director, following a stint in San Francisco. Despite having grown significantly, Fogarty Finger remains malleable, and responsive to ever-evolving industry trends. “About 80 percent of our clients are return clients,” Fogarty told AN. “Not only do clients often come back, they also recommend us. For the longest time we didn’t do business development because we didn’t need to. Now, at our size, we have to be a bit more thoughtful.” “One of many things that differentiates us from other, larger offices is that we’re still first-generation leadership,” Finger added. “We bring a very boutique approach to everything we do. Nobody has an expectation of what the firm does from generations past. This means we don’t have people above us managing us from the financial side [who are] responsible for many, many offices. This gives us more freedom in terms of design; we don’t come with the same overhead as many other firms have.” Astoria West (Alexander Severin) Astoria West, 2022 A waterfront site Fogarty Finger recently negotiated is in Astoria, Queens. Astoria West is a handsome, 500-unit luxury residential complex that’s easily recognizable from Manhattan thanks to its bays, which jut out from the facade. The complex is broken up into three buildings with a shared courtyard. “We had a supertight budget,” Fogarty said. “The client came to us and said, ‘I need something I can recognize while standing in Manhattan.’ So we used dormer rules that allowed for these vertical portals into the apartment, which gave it an identity. Working on a very slim budget, a lot of detailing and thinking went into the windows, which change size, and the brick patterns. A lot of thought also went into the ground plane. We wanted to make apartments that people couldn’t look into from the sidewalk, without creating a soulless pedestrian experience outside.” Private Equity Office (David Mitchell) Private Equity Office, 2024 Fogarty Finger’s interiors studio collaborates with high-caliber real estate, financial services, and legal firms across the Eastern Seaboard. Recently, Fogarty Finger redesigned a space within an iconic Manhattan tower for a private equity firm; the result was a design that’s both inviting and dignifying. “Companies put a lot of thought into their address, but so often how they want their interiors to look and work is an open-ended conversation,” Finger said. “Real estate is becoming a very experience-driven industry, which is affecting everything.” For Fogarty Finger, helping financial services and legal practices arrive at a clear understanding of their identity is paramount, as was the case in this project, in which the client requested to stay anonymous. “We often start with visioning sessions,” Cuber said. “We ask clients to describe themselves in a few words, which often rattles them a bit. It’s so interesting taking these interviews and creating a space that reflects the client and how they want to present themselves.” The Eliza + Inwood Public Library (Alexander Severin) The Eliza + Inwood Public Library, 2024 What to do with all of New York City’s publicly owned land has mayoral candidates talking. Amid ongoing debates, one thing seems clear: The new Eliza Apartments at the redeveloped Inwood Public Library in Manhattan is a very good precedent to use when negotiating city land moving forward. Mayoral candidates Zohran Mamdani, Zellnor Myrie, and Andrew Cuomo all alluded to the Eliza + Inwood Public Library in their housing plans as a case study to emulate. The mixed-use building opened earlier this year and was reviewed by AN. Fogarty Finger designed the ground-up building and its accompanying apartments, while Andrew Berman Architects ideated the ground-level library. “This is a truly multiuse building,” Zimmer said. “It has a community center that’s used for vocational training and STEM in the cellar, and there’s also a universal pre-K.” Nevins Landing in Gowanus, Brooklyn (Courtesy Fogarty Finger) Nevins Landing, 2021– The Gowanus neighborhood is one of the largest, most significant development sites underway in New York today. Many high-profile firms are designing buildings near the polluted canal—a Superfund site in a yearslong cleanup—and Fogarty Finger is one of them. The firm is behind 320 and 340 Nevins Landing, on the banks of what many hope becomes the “eco-friendly Amsterdam of Brooklyn.” Fogarty Finger’s design at Nevins Landing can be understood as two separate plinths that front a shared plaza with towers above them. The facades mimic the old brick buildings in the neighborhood, with all of their idiosyncrasies. One of the other commendable features of Nevins Landing’s design is its retail component: Fogarty Finger created internal public corridors lined with a variety of small commercial spaces. This will ensure the ground level of Nevins Landing is a happening display of artists and coffee shops instead of, say, another Walgreens. “Our goal was to make a neighborhood,” Cuber said.
    Like
    Love
    Wow
    Sad
    Angry
    108
    0 Yorumlar 0 hisse senetleri
  • How much does your road weigh?

    The ways roads are used, with ever larger and heavier vehicles, have dramatic consequences on the environment – and electric cars are not the answer
    Today, there is an average of 37 tonnes of road per inhabitant of the planet. The weight of the road network alone accounts for a third of all construction worldwide, and has grown exponentially in the 20th century. There is 10 times more bitumen, in mass, than there are living animals. Yet growth in the mass of roads does not automatically correspond to population growth, or translate into increased length of road networks. In wealthier countries, the number of metres of road per inhabitant has actually fallen over the last century. In the United States, for instance, between 1905 and 2015 the length of the network increased by a factor of 1.75 and the population by a factor of 3.8, compared with 21 for the mass of roads. Roads have become wider and, above all, much thicker. To understand the evolution of these parameters, and their environmental impact, it is helpful to trace the different stages in the life of the motorway. 
    Until the early 20th century, roads were used for various modes of transport, including horses, bicycles, pedestrians and trams; as a result of the construction of railways, road traffic even declined in some European countries in the 19th century. The main novelty brought by the motorway was that they would be reserved for motorised traffic. In several languages, the word itself – autostrada, autobahn, autoroute or motorway – speaks of this exclusivity. 
    Roman roads varied from simple corduroy roads, made by placing logs perpendicular to the direction of the road over a low or swampy area, to paved roads, as this engraving from Jean Rondelet’s 19th‑century Traité Théorique et Pratique de l’Art de Bâtir shows. Using deep roadbeds of tamped rubble as an underlying layer to ensure that they kept dry, major roads were often stone-paved, metalled, cambered for drainage and flanked by footpaths, bridleways and drainage ditches

    Like any major piece of infrastructure, motorways became the subject of ideological discourse, long before any shovel hit the ground; politicians underlined their role in the service of the nation, how they would contribute to progress, development, the economy, modernity and even civilisation. The inauguration ceremony for the construction of the first autostrada took place in March 1923, presided over by Italy’s prime minister Benito Mussolini. The second major motorway programme was announced by the Nazi government in 1933, with a national network planned to be around 7,000 kilometres long. In his 2017 book Driving Modernity: Technology, Experts, Politics, and Fascist Motorways, 1922–1943, historian Massimo Moraglio shows how both programmes were used as propaganda tools by the regimes, most notably at the international road congresses in Milan in 1926 and Munich in 1934. In the European postwar era, the notion of the ‘civilising’ effect of roads persevered. In 1962, Valéry Giscard d’Estaing, then‑secretary of state for finances and later president of France, argued that expanded motorways would bring ‘progress, activity and life’.
    This discourse soon butted up against the realities of how motorways affected individuals and communities. In his 2011 book Fighting Traffic: The Dawn of the Motor Age in the American City, Peter D Norton explores the history of resistance to the imposition of motorised traffic in North American cities. Until the 1920s, there was a perception that cars were dangerous newcomers, and that other street and road uses – especially walking – were more legitimate. Cars were associated with speed and danger; restrictions on motorists, especially speed limits, were routine. 
    Built between 1962 and 1970, the Westway was London’s first urban motorway, elevated above the city to use less land. Construction workers are seen stressing the longitudinal soffit cables inside the box section of the deck units to achieve the bearing capacity necessary to carry the weight of traffic
    Credit: Heritage Image Partnership Ltd / Alamy
    To gain domination over cities, motor vehicles had to win priority over other street uses. Rather than restricting the flow of vehicles to minimise the risk of road accidents, a specific infrastructure was dedicated to them: both inner‑city roads and motorways. Cutting through the landscape, the motorway had, by definition, to be inaccessible by any other means of transport than motorised vehicle. To guarantee the fluidity of traffic, the construction of imposing bridges, tunnels and interchanges is necessary, particularly at junctions with other roads, railways or canals. This prioritisation of one type of user inevitably impacts journeys for others; as space is fragmented, short journeys are lengthened for those trying to navigate space by foot or bicycle. 
    Enabling cars to drive at around 110–140km/h on motorways, as modern motorways do, directly impacts their design, with major environmental effects: the gradient has to be gentle, the curves longand the lanes wide, to allow vehicles to overtake each other safely. As much terrain around the world is not naturally suited to these requirements, the earthworks are considerable: in France, the construction of a metre of highway requires moving some 100m3 of earth, and when the soil is soft, full of clay or peat, it is made firmer with hydraulic lime and cement before the highway’s first sub‑layers are laid. This material cost reinforces the criticisms levelled in the 1960s, by the likes of Jane Jacobs and Lewis Mumford, at urban planning that prioritised the personal motor vehicle.
    When roads are widened to accommodate more traffic, buildings are sliced and demolished, as happened in Dhaka’s Bhasantek Road in 2021
    Credit: Dhaka Tribune
    Once built, the motorway is never inert. Motorway projects today generally anticipate future expansion, and include a large median strip of 12m between the lanes, with a view to adding new ones. Increases in speed and vehicle sizes have also translated into wider lanes, from 2.5m in 1945 to 3.5m today. The average contemporary motorway footprint is therefore 100 square metres per linear metre. Indeed, although the construction of a road is supposed to reduce congestion, it also generates new traffic and, therefore, new congestion. This is the principle of ‘induced traffic’: the provision of extra road capacity results in a greater volume of traffic.
    The Katy Freeway in Texas famously illustrates this dynamic. Built as a regular six‑lane highway in the 1960s, it was called the second worst bottleneck in the nation by 2004, wasting 25 million hours a year of commuter time. In 2011, the state of Texas invested USbillion to fix this problem, widening the road to a staggering total of 26 lanes. By 2014, the morning and afternoon traffic had both increased again. The vicious circle based on the induced traffic has been empirically demonstrated in most countries: traffic has continued to increase and congestion remains unresolved, leading to ever-increasing emissions. In the EU, transport is the only sector where greenhouse gas emissions have increased in the past three decades, rising 33.5 per cent between 1990 and 2019. Transport accounts for around a fifth of global CO₂ emissions today, with three quarters of this figure linked to road transport.
    Houston’s Katy Freeway is one of the world’s widest motorways, with 26 lanes. Its last expansion, in 2008, was initially hailed as a success, but within five years, peak travel times were longer than before the expansion – a direct illustration of the principle of induced traffic
    Credit: Smiley N Pool / Houston Chronicle / Getty
    Like other large transport infrastructures such as ports and airports, motorways are designed for the largest and heaviest vehicles. Engineers, road administrations and politicians have known since the 1950s that one truck represents millions of cars: the impact of a vehicle on the roadway is exponential to its weight – an online ‘road damage calculator’ allows you to compare the damage done by different types of vehicles to the road. Over the years, heavier and heavier trucks have been authorised to operate on roads: from 8‑tonne trucks in 1945 to 44 tonnes nowadays. The European Parliament adopted a revised directive on 12 March 2024 authorising mega‑trucks to travel on European roads; they can measure up to 25 metres and weigh up to 60 tonnes, compared with the previous limits of 18.75 metres and 44 tonnes. This is a political and economic choice with considerable material effects: thickness, rigidity of sub‑bases and consolidation of soil and subsoil with lime and cement. Altogether, motorways are 10 times thicker than large roads from the late 19th century. In France, it takes an average of 30 tonnes of sand and aggregate to build one linear metre of motorway, 100 times more than cement and bitumen. 
    The material history of road networks is a history of quarrying and environmental damage. The traces of roads can also be seen in rivers emptied of their sediment, the notches of quarries in the hills and the furrows of dredgers extracting sand from the seabed. This material extraction, arguably the most significant in human history, has dramatic ecological consequences for rivers, groundwater tables, the rise of sea levels and saltwater in farmlands, as well as biodiversity. As sand is ubiquitous and very cheap, the history of roads is also the history of a local extractivism and environmental conflicts around the world. 
    Shoving and rutting is the bulging and rippling of the pavement surface. Once built, roads require extensive maintenance – the heavier the vehicles, the quicker the damage. From pothole repair to the full resurfacing of a road, maintenance contributes to keeping road users safe
    Credit: Yakov Oskanov / Alamy
    Once roads are built and extended, they need to be maintained to support the circulation of lorries and, by extension, commodities. This stage is becoming increasingly important as rail freight, which used to be important in countries such as France and the UK, is declining, accounting for no more than 10 per cent of the transport of commodities. Engineers might judge that a motorway is destined to last 20 years or so, but this prognosis will be significantly reduced with heavy traffic. The same applies to the thousands of motorway bridges: in the UK, nearly half of the 9,000 highway bridges are in poor condition; in France, 7 per cent of the 12,000 bridges are in danger of collapsing, as did Genoa’s Morandi bridge in 2018. If only light vehicles drove on it, this infrastructure would last much longer.
    This puts into perspective governments’ insistence on ‘greening’ the transport sector by targeting CO2 emissions alone, typically by promoting the use of electric vehicles. Public policies prioritising EVs do nothing to change the mass of roads or the issue of their maintenance – even if lorries were to run on clean air, massive quarrying would still be necessary. A similar argument plays out with regard to canals and ports, which have been constantly widened and deepened for decades to accommodate ever-larger oil tankers or container ships. The simple operation of these infrastructures, dimensioned for the circulation of commodities and not humans, requires permanent dredging of large volumes. The environmental problem of large transport infrastructure goes beyond the type of energy used: it is, at its root, free and globalised trade.
    ‘The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing’
    As both a material and ideological object, the motorway fixes certain political choices in the landscape. Millions of kilometres of road continue to be asphalted, widened and thickened around the world to favour cars and lorries. In France, more than 80 per cent of today’s sand and aggregate extraction is used for civil engineering works – the rest goes to buildings. Even if no more buildings, roads or other infrastructures were to be built, phenomenal quantities of sand and aggregates would still need to be extracted in order to maintain existing road networks. The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing, adding new structures such as wildlife crossings, more maintaining. 
    Rising traffic levels are always deemed positive by governments for a country’s economy and development. As Christopher Wells shows in his 2014 book Car Country: An Environmental History, car use becomes necessary in an environment where everything has been planned for the car, from the location of public services and supermarkets to residential and office areas. Similarly, when an entire economy is based on globalised trade and just‑in‑time logistics, the lorry and the container ship become vital. 
    The final stage in the life of a piece of motorway infrastructure is dismantling. Like the other stages, this one is not a natural outcome but the fruit of political choices – which should be democratic – regarding how we wish to use existing roads. Dismantling, which is essential if we are to put an end to the global extractivism of sand and aggregates, does not mean destruction: if bicycles and pedestrians were to use them instead, maintenance would be minimal. This final stage requires a paradigm shift away from the eternal adaptation to increasing traffic. Replacing cars and lorries with public transport and rail freight would be a first step. But above all, a different political and spatial organisation of economic activities is necessary, and ultimately, an end to globalised, just-in-time trade and logistics.
    In 1978, a row of cars parked at a shopping centre in Connecticut was buried under a thick layer of gooey asphalt. The Ghost Parking Lot, one of the first projects by James Wines’ practice SITE, became a playground for skateboarders until it was removed in 2003. Images of this lumpy landscape serve as allegories of the damage caused by reliance on the automobile
    Credit: Project by SITE

    Lead image: Some road damage is beyond repair, as when a landslide caused a large chunk of the Gothenburg–Oslo motorway to collapse in 2023. Such dramatic events remind us of both the fragility of these seemingly robust infrastructures, and the damage that extensive construction does to the planet. Credit: Hanna Brunlöf Windell / TT / Shutterstock

    2025-06-03
    Reuben J Brown

    Share
    #how #much #does #your #road
    How much does your road weigh?
    The ways roads are used, with ever larger and heavier vehicles, have dramatic consequences on the environment – and electric cars are not the answer Today, there is an average of 37 tonnes of road per inhabitant of the planet. The weight of the road network alone accounts for a third of all construction worldwide, and has grown exponentially in the 20th century. There is 10 times more bitumen, in mass, than there are living animals. Yet growth in the mass of roads does not automatically correspond to population growth, or translate into increased length of road networks. In wealthier countries, the number of metres of road per inhabitant has actually fallen over the last century. In the United States, for instance, between 1905 and 2015 the length of the network increased by a factor of 1.75 and the population by a factor of 3.8, compared with 21 for the mass of roads. Roads have become wider and, above all, much thicker. To understand the evolution of these parameters, and their environmental impact, it is helpful to trace the different stages in the life of the motorway.  Until the early 20th century, roads were used for various modes of transport, including horses, bicycles, pedestrians and trams; as a result of the construction of railways, road traffic even declined in some European countries in the 19th century. The main novelty brought by the motorway was that they would be reserved for motorised traffic. In several languages, the word itself – autostrada, autobahn, autoroute or motorway – speaks of this exclusivity.  Roman roads varied from simple corduroy roads, made by placing logs perpendicular to the direction of the road over a low or swampy area, to paved roads, as this engraving from Jean Rondelet’s 19th‑century Traité Théorique et Pratique de l’Art de Bâtir shows. Using deep roadbeds of tamped rubble as an underlying layer to ensure that they kept dry, major roads were often stone-paved, metalled, cambered for drainage and flanked by footpaths, bridleways and drainage ditches Like any major piece of infrastructure, motorways became the subject of ideological discourse, long before any shovel hit the ground; politicians underlined their role in the service of the nation, how they would contribute to progress, development, the economy, modernity and even civilisation. The inauguration ceremony for the construction of the first autostrada took place in March 1923, presided over by Italy’s prime minister Benito Mussolini. The second major motorway programme was announced by the Nazi government in 1933, with a national network planned to be around 7,000 kilometres long. In his 2017 book Driving Modernity: Technology, Experts, Politics, and Fascist Motorways, 1922–1943, historian Massimo Moraglio shows how both programmes were used as propaganda tools by the regimes, most notably at the international road congresses in Milan in 1926 and Munich in 1934. In the European postwar era, the notion of the ‘civilising’ effect of roads persevered. In 1962, Valéry Giscard d’Estaing, then‑secretary of state for finances and later president of France, argued that expanded motorways would bring ‘progress, activity and life’. This discourse soon butted up against the realities of how motorways affected individuals and communities. In his 2011 book Fighting Traffic: The Dawn of the Motor Age in the American City, Peter D Norton explores the history of resistance to the imposition of motorised traffic in North American cities. Until the 1920s, there was a perception that cars were dangerous newcomers, and that other street and road uses – especially walking – were more legitimate. Cars were associated with speed and danger; restrictions on motorists, especially speed limits, were routine.  Built between 1962 and 1970, the Westway was London’s first urban motorway, elevated above the city to use less land. Construction workers are seen stressing the longitudinal soffit cables inside the box section of the deck units to achieve the bearing capacity necessary to carry the weight of traffic Credit: Heritage Image Partnership Ltd / Alamy To gain domination over cities, motor vehicles had to win priority over other street uses. Rather than restricting the flow of vehicles to minimise the risk of road accidents, a specific infrastructure was dedicated to them: both inner‑city roads and motorways. Cutting through the landscape, the motorway had, by definition, to be inaccessible by any other means of transport than motorised vehicle. To guarantee the fluidity of traffic, the construction of imposing bridges, tunnels and interchanges is necessary, particularly at junctions with other roads, railways or canals. This prioritisation of one type of user inevitably impacts journeys for others; as space is fragmented, short journeys are lengthened for those trying to navigate space by foot or bicycle.  Enabling cars to drive at around 110–140km/h on motorways, as modern motorways do, directly impacts their design, with major environmental effects: the gradient has to be gentle, the curves longand the lanes wide, to allow vehicles to overtake each other safely. As much terrain around the world is not naturally suited to these requirements, the earthworks are considerable: in France, the construction of a metre of highway requires moving some 100m3 of earth, and when the soil is soft, full of clay or peat, it is made firmer with hydraulic lime and cement before the highway’s first sub‑layers are laid. This material cost reinforces the criticisms levelled in the 1960s, by the likes of Jane Jacobs and Lewis Mumford, at urban planning that prioritised the personal motor vehicle. When roads are widened to accommodate more traffic, buildings are sliced and demolished, as happened in Dhaka’s Bhasantek Road in 2021 Credit: Dhaka Tribune Once built, the motorway is never inert. Motorway projects today generally anticipate future expansion, and include a large median strip of 12m between the lanes, with a view to adding new ones. Increases in speed and vehicle sizes have also translated into wider lanes, from 2.5m in 1945 to 3.5m today. The average contemporary motorway footprint is therefore 100 square metres per linear metre. Indeed, although the construction of a road is supposed to reduce congestion, it also generates new traffic and, therefore, new congestion. This is the principle of ‘induced traffic’: the provision of extra road capacity results in a greater volume of traffic. The Katy Freeway in Texas famously illustrates this dynamic. Built as a regular six‑lane highway in the 1960s, it was called the second worst bottleneck in the nation by 2004, wasting 25 million hours a year of commuter time. In 2011, the state of Texas invested USbillion to fix this problem, widening the road to a staggering total of 26 lanes. By 2014, the morning and afternoon traffic had both increased again. The vicious circle based on the induced traffic has been empirically demonstrated in most countries: traffic has continued to increase and congestion remains unresolved, leading to ever-increasing emissions. In the EU, transport is the only sector where greenhouse gas emissions have increased in the past three decades, rising 33.5 per cent between 1990 and 2019. Transport accounts for around a fifth of global CO₂ emissions today, with three quarters of this figure linked to road transport. Houston’s Katy Freeway is one of the world’s widest motorways, with 26 lanes. Its last expansion, in 2008, was initially hailed as a success, but within five years, peak travel times were longer than before the expansion – a direct illustration of the principle of induced traffic Credit: Smiley N Pool / Houston Chronicle / Getty Like other large transport infrastructures such as ports and airports, motorways are designed for the largest and heaviest vehicles. Engineers, road administrations and politicians have known since the 1950s that one truck represents millions of cars: the impact of a vehicle on the roadway is exponential to its weight – an online ‘road damage calculator’ allows you to compare the damage done by different types of vehicles to the road. Over the years, heavier and heavier trucks have been authorised to operate on roads: from 8‑tonne trucks in 1945 to 44 tonnes nowadays. The European Parliament adopted a revised directive on 12 March 2024 authorising mega‑trucks to travel on European roads; they can measure up to 25 metres and weigh up to 60 tonnes, compared with the previous limits of 18.75 metres and 44 tonnes. This is a political and economic choice with considerable material effects: thickness, rigidity of sub‑bases and consolidation of soil and subsoil with lime and cement. Altogether, motorways are 10 times thicker than large roads from the late 19th century. In France, it takes an average of 30 tonnes of sand and aggregate to build one linear metre of motorway, 100 times more than cement and bitumen.  The material history of road networks is a history of quarrying and environmental damage. The traces of roads can also be seen in rivers emptied of their sediment, the notches of quarries in the hills and the furrows of dredgers extracting sand from the seabed. This material extraction, arguably the most significant in human history, has dramatic ecological consequences for rivers, groundwater tables, the rise of sea levels and saltwater in farmlands, as well as biodiversity. As sand is ubiquitous and very cheap, the history of roads is also the history of a local extractivism and environmental conflicts around the world.  Shoving and rutting is the bulging and rippling of the pavement surface. Once built, roads require extensive maintenance – the heavier the vehicles, the quicker the damage. From pothole repair to the full resurfacing of a road, maintenance contributes to keeping road users safe Credit: Yakov Oskanov / Alamy Once roads are built and extended, they need to be maintained to support the circulation of lorries and, by extension, commodities. This stage is becoming increasingly important as rail freight, which used to be important in countries such as France and the UK, is declining, accounting for no more than 10 per cent of the transport of commodities. Engineers might judge that a motorway is destined to last 20 years or so, but this prognosis will be significantly reduced with heavy traffic. The same applies to the thousands of motorway bridges: in the UK, nearly half of the 9,000 highway bridges are in poor condition; in France, 7 per cent of the 12,000 bridges are in danger of collapsing, as did Genoa’s Morandi bridge in 2018. If only light vehicles drove on it, this infrastructure would last much longer. This puts into perspective governments’ insistence on ‘greening’ the transport sector by targeting CO2 emissions alone, typically by promoting the use of electric vehicles. Public policies prioritising EVs do nothing to change the mass of roads or the issue of their maintenance – even if lorries were to run on clean air, massive quarrying would still be necessary. A similar argument plays out with regard to canals and ports, which have been constantly widened and deepened for decades to accommodate ever-larger oil tankers or container ships. The simple operation of these infrastructures, dimensioned for the circulation of commodities and not humans, requires permanent dredging of large volumes. The environmental problem of large transport infrastructure goes beyond the type of energy used: it is, at its root, free and globalised trade. ‘The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing’ As both a material and ideological object, the motorway fixes certain political choices in the landscape. Millions of kilometres of road continue to be asphalted, widened and thickened around the world to favour cars and lorries. In France, more than 80 per cent of today’s sand and aggregate extraction is used for civil engineering works – the rest goes to buildings. Even if no more buildings, roads or other infrastructures were to be built, phenomenal quantities of sand and aggregates would still need to be extracted in order to maintain existing road networks. The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing, adding new structures such as wildlife crossings, more maintaining.  Rising traffic levels are always deemed positive by governments for a country’s economy and development. As Christopher Wells shows in his 2014 book Car Country: An Environmental History, car use becomes necessary in an environment where everything has been planned for the car, from the location of public services and supermarkets to residential and office areas. Similarly, when an entire economy is based on globalised trade and just‑in‑time logistics, the lorry and the container ship become vital.  The final stage in the life of a piece of motorway infrastructure is dismantling. Like the other stages, this one is not a natural outcome but the fruit of political choices – which should be democratic – regarding how we wish to use existing roads. Dismantling, which is essential if we are to put an end to the global extractivism of sand and aggregates, does not mean destruction: if bicycles and pedestrians were to use them instead, maintenance would be minimal. This final stage requires a paradigm shift away from the eternal adaptation to increasing traffic. Replacing cars and lorries with public transport and rail freight would be a first step. But above all, a different political and spatial organisation of economic activities is necessary, and ultimately, an end to globalised, just-in-time trade and logistics. In 1978, a row of cars parked at a shopping centre in Connecticut was buried under a thick layer of gooey asphalt. The Ghost Parking Lot, one of the first projects by James Wines’ practice SITE, became a playground for skateboarders until it was removed in 2003. Images of this lumpy landscape serve as allegories of the damage caused by reliance on the automobile Credit: Project by SITE Lead image: Some road damage is beyond repair, as when a landslide caused a large chunk of the Gothenburg–Oslo motorway to collapse in 2023. Such dramatic events remind us of both the fragility of these seemingly robust infrastructures, and the damage that extensive construction does to the planet. Credit: Hanna Brunlöf Windell / TT / Shutterstock 2025-06-03 Reuben J Brown Share #how #much #does #your #road
    WWW.ARCHITECTURAL-REVIEW.COM
    How much does your road weigh?
    The ways roads are used, with ever larger and heavier vehicles, have dramatic consequences on the environment – and electric cars are not the answer Today, there is an average of 37 tonnes of road per inhabitant of the planet. The weight of the road network alone accounts for a third of all construction worldwide, and has grown exponentially in the 20th century. There is 10 times more bitumen, in mass, than there are living animals. Yet growth in the mass of roads does not automatically correspond to population growth, or translate into increased length of road networks. In wealthier countries, the number of metres of road per inhabitant has actually fallen over the last century. In the United States, for instance, between 1905 and 2015 the length of the network increased by a factor of 1.75 and the population by a factor of 3.8, compared with 21 for the mass of roads. Roads have become wider and, above all, much thicker. To understand the evolution of these parameters, and their environmental impact, it is helpful to trace the different stages in the life of the motorway.  Until the early 20th century, roads were used for various modes of transport, including horses, bicycles, pedestrians and trams; as a result of the construction of railways, road traffic even declined in some European countries in the 19th century. The main novelty brought by the motorway was that they would be reserved for motorised traffic. In several languages, the word itself – autostrada, autobahn, autoroute or motorway – speaks of this exclusivity.  Roman roads varied from simple corduroy roads, made by placing logs perpendicular to the direction of the road over a low or swampy area, to paved roads, as this engraving from Jean Rondelet’s 19th‑century Traité Théorique et Pratique de l’Art de Bâtir shows. Using deep roadbeds of tamped rubble as an underlying layer to ensure that they kept dry, major roads were often stone-paved, metalled, cambered for drainage and flanked by footpaths, bridleways and drainage ditches Like any major piece of infrastructure, motorways became the subject of ideological discourse, long before any shovel hit the ground; politicians underlined their role in the service of the nation, how they would contribute to progress, development, the economy, modernity and even civilisation. The inauguration ceremony for the construction of the first autostrada took place in March 1923, presided over by Italy’s prime minister Benito Mussolini. The second major motorway programme was announced by the Nazi government in 1933, with a national network planned to be around 7,000 kilometres long. In his 2017 book Driving Modernity: Technology, Experts, Politics, and Fascist Motorways, 1922–1943, historian Massimo Moraglio shows how both programmes were used as propaganda tools by the regimes, most notably at the international road congresses in Milan in 1926 and Munich in 1934. In the European postwar era, the notion of the ‘civilising’ effect of roads persevered. In 1962, Valéry Giscard d’Estaing, then‑secretary of state for finances and later president of France, argued that expanded motorways would bring ‘progress, activity and life’. This discourse soon butted up against the realities of how motorways affected individuals and communities. In his 2011 book Fighting Traffic: The Dawn of the Motor Age in the American City, Peter D Norton explores the history of resistance to the imposition of motorised traffic in North American cities. Until the 1920s, there was a perception that cars were dangerous newcomers, and that other street and road uses – especially walking – were more legitimate. Cars were associated with speed and danger; restrictions on motorists, especially speed limits, were routine.  Built between 1962 and 1970, the Westway was London’s first urban motorway, elevated above the city to use less land. Construction workers are seen stressing the longitudinal soffit cables inside the box section of the deck units to achieve the bearing capacity necessary to carry the weight of traffic Credit: Heritage Image Partnership Ltd / Alamy To gain domination over cities, motor vehicles had to win priority over other street uses. Rather than restricting the flow of vehicles to minimise the risk of road accidents, a specific infrastructure was dedicated to them: both inner‑city roads and motorways. Cutting through the landscape, the motorway had, by definition, to be inaccessible by any other means of transport than motorised vehicle. To guarantee the fluidity of traffic, the construction of imposing bridges, tunnels and interchanges is necessary, particularly at junctions with other roads, railways or canals. This prioritisation of one type of user inevitably impacts journeys for others; as space is fragmented, short journeys are lengthened for those trying to navigate space by foot or bicycle.  Enabling cars to drive at around 110–140km/h on motorways, as modern motorways do, directly impacts their design, with major environmental effects: the gradient has to be gentle (4 per cent), the curves long (1.5km in radius) and the lanes wide, to allow vehicles to overtake each other safely. As much terrain around the world is not naturally suited to these requirements, the earthworks are considerable: in France, the construction of a metre of highway requires moving some 100m3 of earth, and when the soil is soft, full of clay or peat, it is made firmer with hydraulic lime and cement before the highway’s first sub‑layers are laid. This material cost reinforces the criticisms levelled in the 1960s, by the likes of Jane Jacobs and Lewis Mumford, at urban planning that prioritised the personal motor vehicle. When roads are widened to accommodate more traffic, buildings are sliced and demolished, as happened in Dhaka’s Bhasantek Road in 2021 Credit: Dhaka Tribune Once built, the motorway is never inert. Motorway projects today generally anticipate future expansion (from 2×2 to 2×3 to 2×4 lanes), and include a large median strip of 12m between the lanes, with a view to adding new ones. Increases in speed and vehicle sizes have also translated into wider lanes, from 2.5m in 1945 to 3.5m today. The average contemporary motorway footprint is therefore 100 square metres per linear metre. Indeed, although the construction of a road is supposed to reduce congestion, it also generates new traffic and, therefore, new congestion. This is the principle of ‘induced traffic’: the provision of extra road capacity results in a greater volume of traffic. The Katy Freeway in Texas famously illustrates this dynamic. Built as a regular six‑lane highway in the 1960s, it was called the second worst bottleneck in the nation by 2004, wasting 25 million hours a year of commuter time. In 2011, the state of Texas invested US$2.8 billion to fix this problem, widening the road to a staggering total of 26 lanes. By 2014, the morning and afternoon traffic had both increased again. The vicious circle based on the induced traffic has been empirically demonstrated in most countries: traffic has continued to increase and congestion remains unresolved, leading to ever-increasing emissions. In the EU, transport is the only sector where greenhouse gas emissions have increased in the past three decades, rising 33.5 per cent between 1990 and 2019. Transport accounts for around a fifth of global CO₂ emissions today, with three quarters of this figure linked to road transport. Houston’s Katy Freeway is one of the world’s widest motorways, with 26 lanes. Its last expansion, in 2008, was initially hailed as a success, but within five years, peak travel times were longer than before the expansion – a direct illustration of the principle of induced traffic Credit: Smiley N Pool / Houston Chronicle / Getty Like other large transport infrastructures such as ports and airports, motorways are designed for the largest and heaviest vehicles. Engineers, road administrations and politicians have known since the 1950s that one truck represents millions of cars: the impact of a vehicle on the roadway is exponential to its weight – an online ‘road damage calculator’ allows you to compare the damage done by different types of vehicles to the road. Over the years, heavier and heavier trucks have been authorised to operate on roads: from 8‑tonne trucks in 1945 to 44 tonnes nowadays. The European Parliament adopted a revised directive on 12 March 2024 authorising mega‑trucks to travel on European roads; they can measure up to 25 metres and weigh up to 60 tonnes, compared with the previous limits of 18.75 metres and 44 tonnes. This is a political and economic choice with considerable material effects: thickness, rigidity of sub‑bases and consolidation of soil and subsoil with lime and cement. Altogether, motorways are 10 times thicker than large roads from the late 19th century. In France, it takes an average of 30 tonnes of sand and aggregate to build one linear metre of motorway, 100 times more than cement and bitumen.  The material history of road networks is a history of quarrying and environmental damage. The traces of roads can also be seen in rivers emptied of their sediment, the notches of quarries in the hills and the furrows of dredgers extracting sand from the seabed. This material extraction, arguably the most significant in human history, has dramatic ecological consequences for rivers, groundwater tables, the rise of sea levels and saltwater in farmlands, as well as biodiversity. As sand is ubiquitous and very cheap, the history of roads is also the history of a local extractivism and environmental conflicts around the world.  Shoving and rutting is the bulging and rippling of the pavement surface. Once built, roads require extensive maintenance – the heavier the vehicles, the quicker the damage. From pothole repair to the full resurfacing of a road, maintenance contributes to keeping road users safe Credit: Yakov Oskanov / Alamy Once roads are built and extended, they need to be maintained to support the circulation of lorries and, by extension, commodities. This stage is becoming increasingly important as rail freight, which used to be important in countries such as France and the UK, is declining, accounting for no more than 10 per cent of the transport of commodities. Engineers might judge that a motorway is destined to last 20 years or so, but this prognosis will be significantly reduced with heavy traffic. The same applies to the thousands of motorway bridges: in the UK, nearly half of the 9,000 highway bridges are in poor condition; in France, 7 per cent of the 12,000 bridges are in danger of collapsing, as did Genoa’s Morandi bridge in 2018. If only light vehicles drove on it, this infrastructure would last much longer. This puts into perspective governments’ insistence on ‘greening’ the transport sector by targeting CO2 emissions alone, typically by promoting the use of electric vehicles (EVs). Public policies prioritising EVs do nothing to change the mass of roads or the issue of their maintenance – even if lorries were to run on clean air, massive quarrying would still be necessary. A similar argument plays out with regard to canals and ports, which have been constantly widened and deepened for decades to accommodate ever-larger oil tankers or container ships. The simple operation of these infrastructures, dimensioned for the circulation of commodities and not humans, requires permanent dredging of large volumes. The environmental problem of large transport infrastructure goes beyond the type of energy used: it is, at its root, free and globalised trade. ‘The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing’ As both a material and ideological object, the motorway fixes certain political choices in the landscape. Millions of kilometres of road continue to be asphalted, widened and thickened around the world to favour cars and lorries. In France, more than 80 per cent of today’s sand and aggregate extraction is used for civil engineering works – the rest goes to buildings. Even if no more buildings, roads or other infrastructures were to be built, phenomenal quantities of sand and aggregates would still need to be extracted in order to maintain existing road networks. The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing, adding new structures such as wildlife crossings, more maintaining.  Rising traffic levels are always deemed positive by governments for a country’s economy and development. As Christopher Wells shows in his 2014 book Car Country: An Environmental History, car use becomes necessary in an environment where everything has been planned for the car, from the location of public services and supermarkets to residential and office areas. Similarly, when an entire economy is based on globalised trade and just‑in‑time logistics (to the point that many service economies could not produce their own personal protective equipment in the midst of a pandemic), the lorry and the container ship become vital.  The final stage in the life of a piece of motorway infrastructure is dismantling. Like the other stages, this one is not a natural outcome but the fruit of political choices – which should be democratic – regarding how we wish to use existing roads. Dismantling, which is essential if we are to put an end to the global extractivism of sand and aggregates, does not mean destruction: if bicycles and pedestrians were to use them instead, maintenance would be minimal. This final stage requires a paradigm shift away from the eternal adaptation to increasing traffic. Replacing cars and lorries with public transport and rail freight would be a first step. But above all, a different political and spatial organisation of economic activities is necessary, and ultimately, an end to globalised, just-in-time trade and logistics. In 1978, a row of cars parked at a shopping centre in Connecticut was buried under a thick layer of gooey asphalt. The Ghost Parking Lot, one of the first projects by James Wines’ practice SITE, became a playground for skateboarders until it was removed in 2003. Images of this lumpy landscape serve as allegories of the damage caused by reliance on the automobile Credit: Project by SITE Lead image: Some road damage is beyond repair, as when a landslide caused a large chunk of the Gothenburg–Oslo motorway to collapse in 2023. Such dramatic events remind us of both the fragility of these seemingly robust infrastructures, and the damage that extensive construction does to the planet. Credit: Hanna Brunlöf Windell / TT / Shutterstock 2025-06-03 Reuben J Brown Share
    Like
    Love
    Wow
    Sad
    Angry
    153
    0 Yorumlar 0 hisse senetleri
  • Micro Center nerd store fills the Fry’s vacuum with its return to Silicon Valley

    Silicon Valley nerds have been lonelier since Fry’s Electronics shut down in February 2021 in the midst of the pandemic. The electronics store chain was an embodiment of the valley’s tech roots.
    But Micro Center, an electronics retailer from Ohio, has opened its 29th store in Santa Clara, California. And so the nerd kingdom has returned. I see this as a big deal, following up on the opening of the Nintendo store — the second in the country after New York — in San Francisco earlier this month. After years of bad economic news, it’s nice to see signs that the Bay Area is coming back.
    No. To answer your question, nerds cannot live at the Micro Center store.
    But this isn’t just any store. It’s a symbol — a sign that shows tech still has a physical presence in Silicon Valley, in addition to places like the Buck’s Restaurant, the Denny’s where Nvidia started, the Intel Museum, the Computer History Museum, the California Academy of Sciences and the Tech Museum of Innovation. Other historic hangouts for techies like Walker’s Wagon Wheel, Atari’s headquarters, Lion & Compass — even Circuit City — have long since closed. But hey, we’ve got the Micro Center store, and the Apple spaceship is not that far away.
    The grand opening week has been going well and I got a tour of the superstore from Dan Ackerman, a veteran tech journalist who is editor-in-chief at Micro Center News. As I walked into the place, Ackerman was finishing a chat with iFixit, a tech repair publication which has its own space for podcasts inside the store. That was unexpected, as I’ve never seen a store embrace social media in such a way.
    Can you stump the geniuses at the Knowledge Bar at Micro Center?
    Nearby was the Knowledge Bar, where you can get all your tech questions answered — much like the Genius Bars in Apple Stores. And there were repair tables out in the open.
    There are a lot of things for tech enthusiasts can like about Micro Center. First, it’s not as sprawling as Fry’s, which had zany themes like ancient Egypt and a weird mix of electronics goods as well as household appliances, cosmetics, magazines and tons of snack foods.. Fry’s was a store that stereotyped nerds and Silicon Valley, which also had its own HBO television show that carried on the stereotypes.
    Nvidia’s latest RTX 50 Series GPUs were in stock at Micro Center.
    The Micro Center store, by contrast, is smaller at 40,000 square feet and stocked with many more practical nerd items. For the grand opening, this store had the very practical product of more than 4,000 graphics processing unitsin stock from Nvidiaand AMD, Ackerman told me. Some of those graphics cards cost as much as Not to be outdone. AMD has a row of GPUs at Micro Center too.
    “There were people waiting to get to the GPUs,” Ackerman said.
    On display was a gold-plated graphics card that was being auctioned off for charity. It was signed by Jensen Huang, Nvidia CEO.
    Nvidia CEO Jensen Huang signed this GPU being auctioned for charity at Micro Center.
    “I joke that whoever wins the bid should get a Jensen leather jacket as well,” said Ackerman.
    And this Micro Center store has a good locationthat is just a six-minute drive from Apple’s worldwide headquarters anda one-minute walk from the Korean Hair Salon.
    Micro Center had a previous store in Silicon Valley, near Intel’s headquarters in Santa Clara. But that store close in 2012 because the company couldn’t negotiate better terms with the landlord. For its return to the Bay Area, Micro Center bided its time and came back at a time when many other retail chains were failing. It proves that the once proud region — the birthplace of electronics — still merits its own electronics store.
    You can buy dyes for liquid-cooled tubes at Micro Center.
    Sure, we have Target, Best Buy and Walmart selling lots of electronics gear. But there’s nothing like the Akihabara electronics district in Japan, which is full of multi-story electronics stores and gaming arcades.
    But this store is loaded with today’s modern top gear, like AI PCs, Ubiquity home networking gear, and dyes for multi-colored water-cooling systems. Vendors like Razer and Logitech had their own sections. Ackerman was pleased to show me the USB-C to USB-A adapter in stock, among many obscure items. And he showed me the inventory machine that could rotate its stock of 3D-printing filaments and give you the exact SKU that you scanned with a bar code.
    Tech hobbyists can find their love at Micro Center.
    “That’s super fun. I call it Mr. Filaments,” Ackerman said of the inventory robot.
    There’s a section for hobbyists who like single-board computing and DIY projects. There’s a set of video, audio and digital content creation tools for content creators. All told, there are more than 20,000 products and over 100 tech experts who can help. It even has the numbered cashier locations where you can check out — the same kind of checkout stands that Fry’s had.
    The Mr. Filaments robot inventory system at Micro Center.
    Customers can receive authorized computer service for brands like Apple, Dell, and HP, benefiting from same-day diagnostics and repairs, thanks to over 3,000 parts on hand through partnerships with leading OEMs. I only wish it had a help desk for Comcast.
    Micro Center has gear to entertain geeks.
    Micro Center started in 1979 in Columbus, Ohio. It’s a surprise there aren’t more nerd stores, given how ubiquitous tech is around the world these days.
    But Ackerman said, “These guys are really doing it right, picking and choosing, finding the right cities, finding the right locations. That’s why Charlotte is great. Miami is a big tech hub, especially for health tech. And we’re literally five minutes away from Apple headquarters and plenty of other places. People from HP and Nvidia and other companies are coming in today to hang out.”
    “Even though this store is big, the CEOis really into curation, making sure it’s the right mix of stuff. He’s making sure it doesn’t go too far afield. So you’re not going to come in here and find, you know, hair dryers or lawncare equipment,” Ackerman said. “You’re going to find computer and home entertainment stuff, and DIY gear. There are components, just like in a Radio Shack, that hobbyists care about.”
    Dan Ackerman knows how to install a TV on your wall.
    As for the Micro Center News, Ackerman told me he has around 10 regular contributors and 20 more freelancers writing gadget reviews and other stories about tech gear. It is a kind of refuge for that vanishing breed of professional tech journalists. No wonder I was so nostalgic visiting Micro Center.
    #micro #center #nerd #store #fills
    Micro Center nerd store fills the Fry’s vacuum with its return to Silicon Valley
    Silicon Valley nerds have been lonelier since Fry’s Electronics shut down in February 2021 in the midst of the pandemic. The electronics store chain was an embodiment of the valley’s tech roots. But Micro Center, an electronics retailer from Ohio, has opened its 29th store in Santa Clara, California. And so the nerd kingdom has returned. I see this as a big deal, following up on the opening of the Nintendo store — the second in the country after New York — in San Francisco earlier this month. After years of bad economic news, it’s nice to see signs that the Bay Area is coming back. No. To answer your question, nerds cannot live at the Micro Center store. But this isn’t just any store. It’s a symbol — a sign that shows tech still has a physical presence in Silicon Valley, in addition to places like the Buck’s Restaurant, the Denny’s where Nvidia started, the Intel Museum, the Computer History Museum, the California Academy of Sciences and the Tech Museum of Innovation. Other historic hangouts for techies like Walker’s Wagon Wheel, Atari’s headquarters, Lion & Compass — even Circuit City — have long since closed. But hey, we’ve got the Micro Center store, and the Apple spaceship is not that far away. The grand opening week has been going well and I got a tour of the superstore from Dan Ackerman, a veteran tech journalist who is editor-in-chief at Micro Center News. As I walked into the place, Ackerman was finishing a chat with iFixit, a tech repair publication which has its own space for podcasts inside the store. That was unexpected, as I’ve never seen a store embrace social media in such a way. Can you stump the geniuses at the Knowledge Bar at Micro Center? Nearby was the Knowledge Bar, where you can get all your tech questions answered — much like the Genius Bars in Apple Stores. And there were repair tables out in the open. There are a lot of things for tech enthusiasts can like about Micro Center. First, it’s not as sprawling as Fry’s, which had zany themes like ancient Egypt and a weird mix of electronics goods as well as household appliances, cosmetics, magazines and tons of snack foods.. Fry’s was a store that stereotyped nerds and Silicon Valley, which also had its own HBO television show that carried on the stereotypes. Nvidia’s latest RTX 50 Series GPUs were in stock at Micro Center. The Micro Center store, by contrast, is smaller at 40,000 square feet and stocked with many more practical nerd items. For the grand opening, this store had the very practical product of more than 4,000 graphics processing unitsin stock from Nvidiaand AMD, Ackerman told me. Some of those graphics cards cost as much as Not to be outdone. AMD has a row of GPUs at Micro Center too. “There were people waiting to get to the GPUs,” Ackerman said. On display was a gold-plated graphics card that was being auctioned off for charity. It was signed by Jensen Huang, Nvidia CEO. Nvidia CEO Jensen Huang signed this GPU being auctioned for charity at Micro Center. “I joke that whoever wins the bid should get a Jensen leather jacket as well,” said Ackerman. And this Micro Center store has a good locationthat is just a six-minute drive from Apple’s worldwide headquarters anda one-minute walk from the Korean Hair Salon. Micro Center had a previous store in Silicon Valley, near Intel’s headquarters in Santa Clara. But that store close in 2012 because the company couldn’t negotiate better terms with the landlord. For its return to the Bay Area, Micro Center bided its time and came back at a time when many other retail chains were failing. It proves that the once proud region — the birthplace of electronics — still merits its own electronics store. You can buy dyes for liquid-cooled tubes at Micro Center. Sure, we have Target, Best Buy and Walmart selling lots of electronics gear. But there’s nothing like the Akihabara electronics district in Japan, which is full of multi-story electronics stores and gaming arcades. But this store is loaded with today’s modern top gear, like AI PCs, Ubiquity home networking gear, and dyes for multi-colored water-cooling systems. Vendors like Razer and Logitech had their own sections. Ackerman was pleased to show me the USB-C to USB-A adapter in stock, among many obscure items. And he showed me the inventory machine that could rotate its stock of 3D-printing filaments and give you the exact SKU that you scanned with a bar code. Tech hobbyists can find their love at Micro Center. “That’s super fun. I call it Mr. Filaments,” Ackerman said of the inventory robot. There’s a section for hobbyists who like single-board computing and DIY projects. There’s a set of video, audio and digital content creation tools for content creators. All told, there are more than 20,000 products and over 100 tech experts who can help. It even has the numbered cashier locations where you can check out — the same kind of checkout stands that Fry’s had. The Mr. Filaments robot inventory system at Micro Center. Customers can receive authorized computer service for brands like Apple, Dell, and HP, benefiting from same-day diagnostics and repairs, thanks to over 3,000 parts on hand through partnerships with leading OEMs. I only wish it had a help desk for Comcast. Micro Center has gear to entertain geeks. Micro Center started in 1979 in Columbus, Ohio. It’s a surprise there aren’t more nerd stores, given how ubiquitous tech is around the world these days. But Ackerman said, “These guys are really doing it right, picking and choosing, finding the right cities, finding the right locations. That’s why Charlotte is great. Miami is a big tech hub, especially for health tech. And we’re literally five minutes away from Apple headquarters and plenty of other places. People from HP and Nvidia and other companies are coming in today to hang out.” “Even though this store is big, the CEOis really into curation, making sure it’s the right mix of stuff. He’s making sure it doesn’t go too far afield. So you’re not going to come in here and find, you know, hair dryers or lawncare equipment,” Ackerman said. “You’re going to find computer and home entertainment stuff, and DIY gear. There are components, just like in a Radio Shack, that hobbyists care about.” Dan Ackerman knows how to install a TV on your wall. As for the Micro Center News, Ackerman told me he has around 10 regular contributors and 20 more freelancers writing gadget reviews and other stories about tech gear. It is a kind of refuge for that vanishing breed of professional tech journalists. No wonder I was so nostalgic visiting Micro Center. #micro #center #nerd #store #fills
    VENTUREBEAT.COM
    Micro Center nerd store fills the Fry’s vacuum with its return to Silicon Valley
    Silicon Valley nerds have been lonelier since Fry’s Electronics shut down in February 2021 in the midst of the pandemic. The electronics store chain was an embodiment of the valley’s tech roots. But Micro Center, an electronics retailer from Ohio, has opened its 29th store in Santa Clara, California. And so the nerd kingdom has returned. I see this as a big deal, following up on the opening of the Nintendo store — the second in the country after New York — in San Francisco earlier this month. After years of bad economic news, it’s nice to see signs that the Bay Area is coming back. No. To answer your question, nerds cannot live at the Micro Center store. But this isn’t just any store. It’s a symbol — a sign that shows tech still has a physical presence in Silicon Valley, in addition to places like the Buck’s Restaurant, the Denny’s where Nvidia started, the Intel Museum, the Computer History Museum, the California Academy of Sciences and the Tech Museum of Innovation. Other historic hangouts for techies like Walker’s Wagon Wheel, Atari’s headquarters, Lion & Compass — even Circuit City — have long since closed. But hey, we’ve got the Micro Center store, and the Apple spaceship is not that far away. The grand opening week has been going well and I got a tour of the superstore from Dan Ackerman, a veteran tech journalist who is editor-in-chief at Micro Center News. As I walked into the place, Ackerman was finishing a chat with iFixit, a tech repair publication which has its own space for podcasts inside the store. That was unexpected, as I’ve never seen a store embrace social media in such a way. Can you stump the geniuses at the Knowledge Bar at Micro Center? Nearby was the Knowledge Bar, where you can get all your tech questions answered — much like the Genius Bars in Apple Stores. And there were repair tables out in the open. There are a lot of things for tech enthusiasts can like about Micro Center. First, it’s not as sprawling as Fry’s, which had zany themes like ancient Egypt and a weird mix of electronics goods as well as household appliances, cosmetics, magazines and tons of snack foods. (The Egyptian-themed Campbell, California Fry’s store that I drove by often was 156,000 square feet, and now it’s home to a pickleball court complex). Fry’s was a store that stereotyped nerds and Silicon Valley, which also had its own HBO television show that carried on the stereotypes. Nvidia’s latest RTX 50 Series GPUs were in stock at Micro Center. The Micro Center store, by contrast, is smaller at 40,000 square feet and stocked with many more practical nerd items. For the grand opening, this store had the very practical product of more than 4,000 graphics processing units (GPUs) in stock from Nvidia (which just launched its 50 Series GPUs) and AMD, Ackerman told me. Some of those graphics cards cost as much as $4,000. Not to be outdone. AMD has a row of GPUs at Micro Center too. “There were people waiting to get to the GPUs,” Ackerman said. On display was a gold-plated graphics card that was being auctioned off for charity. It was signed by Jensen Huang, Nvidia CEO. Nvidia CEO Jensen Huang signed this GPU being auctioned for charity at Micro Center. “I joke that whoever wins the bid should get a Jensen leather jacket as well,” said Ackerman. And this Micro Center store has a good location (5201 Stevens Creek Boulevard in Santa Clara) that is just a six-minute drive from Apple’s worldwide headquarters and (perhaps better yet) a one-minute walk from the Korean Hair Salon. Micro Center had a previous store in Silicon Valley, near Intel’s headquarters in Santa Clara. But that store close in 2012 because the company couldn’t negotiate better terms with the landlord. For its return to the Bay Area, Micro Center bided its time and came back at a time when many other retail chains were failing. It proves that the once proud region — the birthplace of electronics — still merits its own electronics store. You can buy dyes for liquid-cooled tubes at Micro Center. Sure, we have Target, Best Buy and Walmart selling lots of electronics gear. But there’s nothing like the Akihabara electronics district in Japan, which is full of multi-story electronics stores and gaming arcades. But this store is loaded with today’s modern top gear, like AI PCs, Ubiquity home networking gear, and dyes for multi-colored water-cooling systems. Vendors like Razer and Logitech had their own sections. Ackerman was pleased to show me the USB-C to USB-A adapter in stock, among many obscure items. And he showed me the inventory machine that could rotate its stock of 3D-printing filaments and give you the exact SKU that you scanned with a bar code. Tech hobbyists can find their love at Micro Center. “That’s super fun. I call it Mr. Filaments,” Ackerman said of the inventory robot. There’s a section for hobbyists who like single-board computing and DIY projects. There’s a set of video, audio and digital content creation tools for content creators. All told, there are more than 20,000 products and over 100 tech experts who can help. It even has the numbered cashier locations where you can check out — the same kind of checkout stands that Fry’s had. The Mr. Filaments robot inventory system at Micro Center. Customers can receive authorized computer service for brands like Apple, Dell, and HP, benefiting from same-day diagnostics and repairs, thanks to over 3,000 parts on hand through partnerships with leading OEMs. I only wish it had a help desk for Comcast. Micro Center has gear to entertain geeks. Micro Center started in 1979 in Columbus, Ohio. It’s a surprise there aren’t more nerd stores, given how ubiquitous tech is around the world these days. But Ackerman said, “These guys are really doing it right, picking and choosing, finding the right cities, finding the right locations. That’s why Charlotte is great. Miami is a big tech hub, especially for health tech. And we’re literally five minutes away from Apple headquarters and plenty of other places. People from HP and Nvidia and other companies are coming in today to hang out.” “Even though this store is big, the CEO (Richard Mershad) is really into curation, making sure it’s the right mix of stuff. He’s making sure it doesn’t go too far afield. So you’re not going to come in here and find, you know, hair dryers or lawncare equipment,” Ackerman said. “You’re going to find computer and home entertainment stuff, and DIY gear. There are components, just like in a Radio Shack, that hobbyists care about.” Dan Ackerman knows how to install a TV on your wall. As for the Micro Center News, Ackerman told me he has around 10 regular contributors and 20 more freelancers writing gadget reviews and other stories about tech gear. It is a kind of refuge for that vanishing breed of professional tech journalists. No wonder I was so nostalgic visiting Micro Center.
    0 Yorumlar 0 hisse senetleri
  • Research roundup: 7 stories we almost missed

    Best of the rest

    Research roundup: 7 stories we almost missed

    Also: drumming chimpanzees, picking styles of two jazz greats, and an ancient underground city's soundscape

    Jennifer Ouellette



    May 31, 2025 5:37 pm

    |

    4

    Time lapse photos show a new ping-pong-playing robot performing a top spin.

    Credit:

    David Nguyen, Kendrick Cancio and Sangbae Kim

    Time lapse photos show a new ping-pong-playing robot performing a top spin.

    Credit:

    David Nguyen, Kendrick Cancio and Sangbae Kim

    Story text

    Size

    Small
    Standard
    Large

    Width
    *

    Standard
    Wide

    Links

    Standard
    Orange

    * Subscribers only
      Learn more

    It's a regrettable reality that there is never time to cover all the interesting scientific stories we come across each month. In the past, we've featured year-end roundups of cool science stories wemissed. This year, we're experimenting with a monthly collection. May's list includes a nifty experiment to make a predicted effect of special relativity visible; a ping-pong playing robot that can return hits with 88 percent accuracy; and the discovery of the rare genetic mutation that makes orange cats orange, among other highlights.
    Special relativity made visible

    Credit:

    TU Wien

    Perhaps the most well-known feature of Albert Einstein's special theory of relativity is time dilation and length contraction. In 1959, two physicists predicted another feature of relativistic motion: an object moving near the speed of light should also appear to be rotated. It's not been possible to demonstrate this experimentally, however—until now. Physicists at the Vienna University of Technology figured out how to reproduce this rotational effect in the lab using laser pulses and precision cameras, according to a paper published in the journal Communications Physics.
    They found their inspiration in art, specifically an earlier collaboration with an artist named Enar de Dios Rodriguez, who collaborated with VUT and the University of Vienna on a project involving ultra-fast photography and slow light. For this latest research, they used objects shaped like a cube and a sphere and moved them around the lab while zapping them with ultrashort laser pulses, recording the flashes with a high-speed camera.
    Getting the timing just right effectively yields similar results to a light speed of 2 m/s. After photographing the objects many times using this method, the team then combined the still images into a single image. The results: the cube looked twisted and the sphere's North Pole was in a different location—a demonstration of the rotational effect predicted back in 1959.

    DOI: Communications Physics, 2025. 10.1038/s42005-025-02003-6  .
    Drumming chimpanzees

    A chimpanzee feeling the rhythm. Credit: Current Biology/Eleuteri et al., 2025.

    Chimpanzees are known to "drum" on the roots of trees as a means of communication, often combining that action with what are known as "pant-hoot" vocalizations. Scientists have found that the chimps' drumming exhibits key elements of musical rhythm much like humans, according to  a paper published in the journal Current Biology—specifically non-random timing and isochrony. And chimps from different geographical regions have different drumming rhythms.
    Back in 2022, the same team observed that individual chimps had unique styles of "buttress drumming," which served as a kind of communication, letting others in the same group know their identity, location, and activity. This time around they wanted to know if this was also true of chimps living in different groups and whether their drumming was rhythmic in nature. So they collected video footage of the drumming behavior among 11 chimpanzee communities across six populations in East Africaand West Africa, amounting to 371 drumming bouts.
    Their analysis of the drum patterns confirmed their hypothesis. The western chimps drummed in regularly spaced hits, used faster tempos, and started drumming earlier during their pant-hoot vocalizations. Eastern chimps would alternate between shorter and longer spaced hits. Since this kind of rhythmic percussion is one of the earliest evolved forms of human musical expression and is ubiquitous across cultures, findings such as this could shed light on how our love of rhythm evolved.
    DOI: Current Biology, 2025. 10.1016/j.cub.2025.04.019  .
    Distinctive styles of two jazz greats

    Jazz lovers likely need no introduction to Joe Pass and Wes Montgomery, 20th century guitarists who influenced generations of jazz musicians with their innovative techniques. Montgomery, for instance, didn't use a pick, preferring to pluck the strings with his thumb—a method he developed because he practiced at night after working all day as a machinist and didn't want to wake his children or neighbors. Pass developed his own range of picking techniques, including fingerpicking, hybrid picking, and "flat picking."
    Chirag Gokani and Preston Wilson, both with Applied Research Laboratories and the University of Texas, Austin, greatly admired both Pass and Montgomery and decided to explore the underlying the acoustics of their distinctive playing, modeling the interactions of the thumb, fingers, and pick with a guitar string. They described their research during a meeting of the Acoustical Society of America in New Orleans, LA.
    Among their findings: Montgomery achieved his warm tone by playing closer to the bridge and mostly plucking at the string. Pass's rich tone arose from a combination of using a pick and playing closer to the guitar neck. There were also differences in how much a thumb, finger, and pick slip off the string:  use of the thumbproduced more of a "pluck" compared to the pick, which produced more of a "strike." Gokani and Wilson think their model could be used to synthesize digital guitars with a more realistic sound, as well as helping guitarists better emulate Pass and Montgomery.
    Sounds of an ancient underground city

    Credit:

    Sezin Nas

    Turkey is home to the underground city Derinkuyu, originally carved out inside soft volcanic rock around the 8th century BCE. It was later expanded to include four main ventilation channelsserving seven levels, which could be closed off from the inside with a large rolling stone. The city could hold up to 20,000 people and it  was connected to another underground city, Kaymakli, via tunnels. Derinkuyu helped protect Arab Muslims during the Arab-Byzantine wars, served as a refuge from the Ottomans in the 14th century, and as a haven for Armenians escaping persecution in the early 20th century, among other functions.

    The tunnels were rediscovered in the 1960s and about half of the city has been open to visitors since 2016. The site is naturally of great archaeological interest, but there has been little to no research on the acoustics of the site, particularly the ventilation channels—one of Derinkuyu's most unique features, according to Sezin Nas, an architectural acoustician at Istanbul Galata University in Turkey.  She gave a talk at a meeting of the Acoustical Society of America in New Orleans, LA, about her work on the site's acoustic environment.
    Nas analyzed a church, a living area, and a kitchen, measuring sound sources and reverberation patterns, among other factors, to create a 3D virtual soundscape. The hope is that a better understanding of this aspect of Derinkuyu could improve the design of future underground urban spaces—as well as one day using her virtual soundscape to enable visitors to experience the sounds of the city themselves.
    MIT's latest ping-pong robot
    Robots playing ping-pong have been a thing since the 1980s, of particular interest to scientists because it requires the robot to combine the slow, precise ability to grasp and pick up objects with dynamic, adaptable locomotion. Such robots need high-speed machine vision, fast motors and actuators, precise control, and the ability to make accurate predictions in real time, not to mention being able to develop a game strategy. More recent designs use AI techniques to allow the robots to "learn" from prior data to improve their performance.
    MIT researchers have built their own version of a ping-pong playing robot, incorporating a lightweight design and the ability to precisely return shots. They built on prior work developing the Humanoid, a small bipedal two-armed robot—specifically, modifying the Humanoid's arm by adding an extra degree of freedom to the wrist so the robot could control a ping-pong paddle. They tested their robot by mounting it on a ping-pong table and lobbing 150 balls at it from the other side of the table, capturing the action with high-speed cameras.

    The new bot can execute three different swing typesand during the trial runs it returned the ball with impressive accuracy across all three types: 88.4 percent, 89.2 percent, and 87.5 percent, respectively. Subsequent tweaks to theirrystem brought the robot's strike speed up to 19 meters per second, close to the 12 to 25 meters per second of advanced human players. The addition of control algorithms gave the robot the ability to aim. The robot still has limited mobility and reach because it has to be fixed to the ping-pong table but the MIT researchers plan to rig it to a gantry or wheeled platform in the future to address that shortcoming.
    Why orange cats are orange

    Credit:

    Astropulse/CC BY-SA 3.0

    Cat lovers know orange cats are special for more than their unique coloring, but that's the quality that has intrigued scientists for almost a century. Sure, lots of animals have orange, ginger, or yellow hues, like tigers, orangutans, and golden retrievers. But in domestic cats that color is specifically linked to sex. Almost all orange cats are male. Scientists have now identified the genetic mutation responsible and it appears to be unique to cats, according to a paper published in the journal Current Biology.
    Prior work had narrowed down the region on the X chromosome most likely to contain the relevant mutation. The scientists knew that females usually have just one copy of the mutation and in that case have tortoiseshellcoloring, although in rare cases, a female cat will be orange if both X chromosomes have the mutation. Over the last five to ten years, there has been an explosion in genome resourcesfor cats which greatly aided the team's research, along with taking additional DNA samples from cats at spay and neuter clinics.

    From an initial pool of 51 candidate variants, the scientists narrowed it down to three genes, only one of which was likely to play any role in gene regulation: Arhgap36. It wasn't known to play any role in pigment cells in humans, mice, or non-orange cats. But orange cats are special; their mutationturns on Arhgap36 expression in pigment cells, thereby interfering with the molecular pathway that controls coat color in other orange-shaded mammals. The scientists suggest that this is an example of how genes can acquire new functions, thereby enabling species to better adapt and evolve.
    DOI: Current Biology, 2025. 10.1016/j.cub.2025.03.075  .
    Not a Roman "massacre" after all

    Credit:

    Martin Smith

    In 1936, archaeologists excavating the Iron Age hill fort Maiden Castle in the UK unearthed dozens of human skeletons, all showing signs of lethal injuries to the head and upper body—likely inflicted with weaponry. At the time, this was interpreted as evidence of a pitched battle between the Britons of the local Durotriges tribe and invading Romans. The Romans slaughtered the native inhabitants, thereby bringing a sudden violent end to the Iron Age. At least that's the popular narrative that has prevailed ever since in countless popular articles, books, and documentaries.
    But a paper published in the Oxford Journal of Archaeology calls that narrative into question. Archaeologists at Bournemouth University have re-analyzed those burials, incorporating radiocarbon dating into their efforts. They concluded that those individuals didn't die in a single brutal battle. Rather, it was Britons killing other Britons over multiple generations between the first century BCE and the first century CE—most likely in periodic localized outbursts of violence in the lead-up to the Roman conquest of Britain. It's possible there are still many human remains waiting to be discovered at the site, which could shed further light on what happened at Maiden Castle.
    DOI: Oxford Journal of Archaeology, 2025. 10.1111/ojoa.12324  .

    Jennifer Ouellette
    Senior Writer

    Jennifer Ouellette
    Senior Writer

    Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

    4 Comments
    #research #roundup #stories #almost #missed
    Research roundup: 7 stories we almost missed
    Best of the rest Research roundup: 7 stories we almost missed Also: drumming chimpanzees, picking styles of two jazz greats, and an ancient underground city's soundscape Jennifer Ouellette – May 31, 2025 5:37 pm | 4 Time lapse photos show a new ping-pong-playing robot performing a top spin. Credit: David Nguyen, Kendrick Cancio and Sangbae Kim Time lapse photos show a new ping-pong-playing robot performing a top spin. Credit: David Nguyen, Kendrick Cancio and Sangbae Kim Story text Size Small Standard Large Width * Standard Wide Links Standard Orange * Subscribers only   Learn more It's a regrettable reality that there is never time to cover all the interesting scientific stories we come across each month. In the past, we've featured year-end roundups of cool science stories wemissed. This year, we're experimenting with a monthly collection. May's list includes a nifty experiment to make a predicted effect of special relativity visible; a ping-pong playing robot that can return hits with 88 percent accuracy; and the discovery of the rare genetic mutation that makes orange cats orange, among other highlights. Special relativity made visible Credit: TU Wien Perhaps the most well-known feature of Albert Einstein's special theory of relativity is time dilation and length contraction. In 1959, two physicists predicted another feature of relativistic motion: an object moving near the speed of light should also appear to be rotated. It's not been possible to demonstrate this experimentally, however—until now. Physicists at the Vienna University of Technology figured out how to reproduce this rotational effect in the lab using laser pulses and precision cameras, according to a paper published in the journal Communications Physics. They found their inspiration in art, specifically an earlier collaboration with an artist named Enar de Dios Rodriguez, who collaborated with VUT and the University of Vienna on a project involving ultra-fast photography and slow light. For this latest research, they used objects shaped like a cube and a sphere and moved them around the lab while zapping them with ultrashort laser pulses, recording the flashes with a high-speed camera. Getting the timing just right effectively yields similar results to a light speed of 2 m/s. After photographing the objects many times using this method, the team then combined the still images into a single image. The results: the cube looked twisted and the sphere's North Pole was in a different location—a demonstration of the rotational effect predicted back in 1959. DOI: Communications Physics, 2025. 10.1038/s42005-025-02003-6  . Drumming chimpanzees A chimpanzee feeling the rhythm. Credit: Current Biology/Eleuteri et al., 2025. Chimpanzees are known to "drum" on the roots of trees as a means of communication, often combining that action with what are known as "pant-hoot" vocalizations. Scientists have found that the chimps' drumming exhibits key elements of musical rhythm much like humans, according to  a paper published in the journal Current Biology—specifically non-random timing and isochrony. And chimps from different geographical regions have different drumming rhythms. Back in 2022, the same team observed that individual chimps had unique styles of "buttress drumming," which served as a kind of communication, letting others in the same group know their identity, location, and activity. This time around they wanted to know if this was also true of chimps living in different groups and whether their drumming was rhythmic in nature. So they collected video footage of the drumming behavior among 11 chimpanzee communities across six populations in East Africaand West Africa, amounting to 371 drumming bouts. Their analysis of the drum patterns confirmed their hypothesis. The western chimps drummed in regularly spaced hits, used faster tempos, and started drumming earlier during their pant-hoot vocalizations. Eastern chimps would alternate between shorter and longer spaced hits. Since this kind of rhythmic percussion is one of the earliest evolved forms of human musical expression and is ubiquitous across cultures, findings such as this could shed light on how our love of rhythm evolved. DOI: Current Biology, 2025. 10.1016/j.cub.2025.04.019  . Distinctive styles of two jazz greats Jazz lovers likely need no introduction to Joe Pass and Wes Montgomery, 20th century guitarists who influenced generations of jazz musicians with their innovative techniques. Montgomery, for instance, didn't use a pick, preferring to pluck the strings with his thumb—a method he developed because he practiced at night after working all day as a machinist and didn't want to wake his children or neighbors. Pass developed his own range of picking techniques, including fingerpicking, hybrid picking, and "flat picking." Chirag Gokani and Preston Wilson, both with Applied Research Laboratories and the University of Texas, Austin, greatly admired both Pass and Montgomery and decided to explore the underlying the acoustics of their distinctive playing, modeling the interactions of the thumb, fingers, and pick with a guitar string. They described their research during a meeting of the Acoustical Society of America in New Orleans, LA. Among their findings: Montgomery achieved his warm tone by playing closer to the bridge and mostly plucking at the string. Pass's rich tone arose from a combination of using a pick and playing closer to the guitar neck. There were also differences in how much a thumb, finger, and pick slip off the string:  use of the thumbproduced more of a "pluck" compared to the pick, which produced more of a "strike." Gokani and Wilson think their model could be used to synthesize digital guitars with a more realistic sound, as well as helping guitarists better emulate Pass and Montgomery. Sounds of an ancient underground city Credit: Sezin Nas Turkey is home to the underground city Derinkuyu, originally carved out inside soft volcanic rock around the 8th century BCE. It was later expanded to include four main ventilation channelsserving seven levels, which could be closed off from the inside with a large rolling stone. The city could hold up to 20,000 people and it  was connected to another underground city, Kaymakli, via tunnels. Derinkuyu helped protect Arab Muslims during the Arab-Byzantine wars, served as a refuge from the Ottomans in the 14th century, and as a haven for Armenians escaping persecution in the early 20th century, among other functions. The tunnels were rediscovered in the 1960s and about half of the city has been open to visitors since 2016. The site is naturally of great archaeological interest, but there has been little to no research on the acoustics of the site, particularly the ventilation channels—one of Derinkuyu's most unique features, according to Sezin Nas, an architectural acoustician at Istanbul Galata University in Turkey.  She gave a talk at a meeting of the Acoustical Society of America in New Orleans, LA, about her work on the site's acoustic environment. Nas analyzed a church, a living area, and a kitchen, measuring sound sources and reverberation patterns, among other factors, to create a 3D virtual soundscape. The hope is that a better understanding of this aspect of Derinkuyu could improve the design of future underground urban spaces—as well as one day using her virtual soundscape to enable visitors to experience the sounds of the city themselves. MIT's latest ping-pong robot Robots playing ping-pong have been a thing since the 1980s, of particular interest to scientists because it requires the robot to combine the slow, precise ability to grasp and pick up objects with dynamic, adaptable locomotion. Such robots need high-speed machine vision, fast motors and actuators, precise control, and the ability to make accurate predictions in real time, not to mention being able to develop a game strategy. More recent designs use AI techniques to allow the robots to "learn" from prior data to improve their performance. MIT researchers have built their own version of a ping-pong playing robot, incorporating a lightweight design and the ability to precisely return shots. They built on prior work developing the Humanoid, a small bipedal two-armed robot—specifically, modifying the Humanoid's arm by adding an extra degree of freedom to the wrist so the robot could control a ping-pong paddle. They tested their robot by mounting it on a ping-pong table and lobbing 150 balls at it from the other side of the table, capturing the action with high-speed cameras. The new bot can execute three different swing typesand during the trial runs it returned the ball with impressive accuracy across all three types: 88.4 percent, 89.2 percent, and 87.5 percent, respectively. Subsequent tweaks to theirrystem brought the robot's strike speed up to 19 meters per second, close to the 12 to 25 meters per second of advanced human players. The addition of control algorithms gave the robot the ability to aim. The robot still has limited mobility and reach because it has to be fixed to the ping-pong table but the MIT researchers plan to rig it to a gantry or wheeled platform in the future to address that shortcoming. Why orange cats are orange Credit: Astropulse/CC BY-SA 3.0 Cat lovers know orange cats are special for more than their unique coloring, but that's the quality that has intrigued scientists for almost a century. Sure, lots of animals have orange, ginger, or yellow hues, like tigers, orangutans, and golden retrievers. But in domestic cats that color is specifically linked to sex. Almost all orange cats are male. Scientists have now identified the genetic mutation responsible and it appears to be unique to cats, according to a paper published in the journal Current Biology. Prior work had narrowed down the region on the X chromosome most likely to contain the relevant mutation. The scientists knew that females usually have just one copy of the mutation and in that case have tortoiseshellcoloring, although in rare cases, a female cat will be orange if both X chromosomes have the mutation. Over the last five to ten years, there has been an explosion in genome resourcesfor cats which greatly aided the team's research, along with taking additional DNA samples from cats at spay and neuter clinics. From an initial pool of 51 candidate variants, the scientists narrowed it down to three genes, only one of which was likely to play any role in gene regulation: Arhgap36. It wasn't known to play any role in pigment cells in humans, mice, or non-orange cats. But orange cats are special; their mutationturns on Arhgap36 expression in pigment cells, thereby interfering with the molecular pathway that controls coat color in other orange-shaded mammals. The scientists suggest that this is an example of how genes can acquire new functions, thereby enabling species to better adapt and evolve. DOI: Current Biology, 2025. 10.1016/j.cub.2025.03.075  . Not a Roman "massacre" after all Credit: Martin Smith In 1936, archaeologists excavating the Iron Age hill fort Maiden Castle in the UK unearthed dozens of human skeletons, all showing signs of lethal injuries to the head and upper body—likely inflicted with weaponry. At the time, this was interpreted as evidence of a pitched battle between the Britons of the local Durotriges tribe and invading Romans. The Romans slaughtered the native inhabitants, thereby bringing a sudden violent end to the Iron Age. At least that's the popular narrative that has prevailed ever since in countless popular articles, books, and documentaries. But a paper published in the Oxford Journal of Archaeology calls that narrative into question. Archaeologists at Bournemouth University have re-analyzed those burials, incorporating radiocarbon dating into their efforts. They concluded that those individuals didn't die in a single brutal battle. Rather, it was Britons killing other Britons over multiple generations between the first century BCE and the first century CE—most likely in periodic localized outbursts of violence in the lead-up to the Roman conquest of Britain. It's possible there are still many human remains waiting to be discovered at the site, which could shed further light on what happened at Maiden Castle. DOI: Oxford Journal of Archaeology, 2025. 10.1111/ojoa.12324  . Jennifer Ouellette Senior Writer Jennifer Ouellette Senior Writer Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban. 4 Comments #research #roundup #stories #almost #missed
    ARSTECHNICA.COM
    Research roundup: 7 stories we almost missed
    Best of the rest Research roundup: 7 stories we almost missed Also: drumming chimpanzees, picking styles of two jazz greats, and an ancient underground city's soundscape Jennifer Ouellette – May 31, 2025 5:37 pm | 4 Time lapse photos show a new ping-pong-playing robot performing a top spin. Credit: David Nguyen, Kendrick Cancio and Sangbae Kim Time lapse photos show a new ping-pong-playing robot performing a top spin. Credit: David Nguyen, Kendrick Cancio and Sangbae Kim Story text Size Small Standard Large Width * Standard Wide Links Standard Orange * Subscribers only   Learn more It's a regrettable reality that there is never time to cover all the interesting scientific stories we come across each month. In the past, we've featured year-end roundups of cool science stories we (almost) missed. This year, we're experimenting with a monthly collection. May's list includes a nifty experiment to make a predicted effect of special relativity visible; a ping-pong playing robot that can return hits with 88 percent accuracy; and the discovery of the rare genetic mutation that makes orange cats orange, among other highlights. Special relativity made visible Credit: TU Wien Perhaps the most well-known feature of Albert Einstein's special theory of relativity is time dilation and length contraction. In 1959, two physicists predicted another feature of relativistic motion: an object moving near the speed of light should also appear to be rotated. It's not been possible to demonstrate this experimentally, however—until now. Physicists at the Vienna University of Technology figured out how to reproduce this rotational effect in the lab using laser pulses and precision cameras, according to a paper published in the journal Communications Physics. They found their inspiration in art, specifically an earlier collaboration with an artist named Enar de Dios Rodriguez, who collaborated with VUT and the University of Vienna on a project involving ultra-fast photography and slow light. For this latest research, they used objects shaped like a cube and a sphere and moved them around the lab while zapping them with ultrashort laser pulses, recording the flashes with a high-speed camera. Getting the timing just right effectively yields similar results to a light speed of 2 m/s. After photographing the objects many times using this method, the team then combined the still images into a single image. The results: the cube looked twisted and the sphere's North Pole was in a different location—a demonstration of the rotational effect predicted back in 1959. DOI: Communications Physics, 2025. 10.1038/s42005-025-02003-6  (About DOIs). Drumming chimpanzees A chimpanzee feeling the rhythm. Credit: Current Biology/Eleuteri et al., 2025. Chimpanzees are known to "drum" on the roots of trees as a means of communication, often combining that action with what are known as "pant-hoot" vocalizations (see above video). Scientists have found that the chimps' drumming exhibits key elements of musical rhythm much like humans, according to  a paper published in the journal Current Biology—specifically non-random timing and isochrony. And chimps from different geographical regions have different drumming rhythms. Back in 2022, the same team observed that individual chimps had unique styles of "buttress drumming," which served as a kind of communication, letting others in the same group know their identity, location, and activity. This time around they wanted to know if this was also true of chimps living in different groups and whether their drumming was rhythmic in nature. So they collected video footage of the drumming behavior among 11 chimpanzee communities across six populations in East Africa (Uganda) and West Africa (Ivory Coast), amounting to 371 drumming bouts. Their analysis of the drum patterns confirmed their hypothesis. The western chimps drummed in regularly spaced hits, used faster tempos, and started drumming earlier during their pant-hoot vocalizations. Eastern chimps would alternate between shorter and longer spaced hits. Since this kind of rhythmic percussion is one of the earliest evolved forms of human musical expression and is ubiquitous across cultures, findings such as this could shed light on how our love of rhythm evolved. DOI: Current Biology, 2025. 10.1016/j.cub.2025.04.019  (About DOIs). Distinctive styles of two jazz greats Jazz lovers likely need no introduction to Joe Pass and Wes Montgomery, 20th century guitarists who influenced generations of jazz musicians with their innovative techniques. Montgomery, for instance, didn't use a pick, preferring to pluck the strings with his thumb—a method he developed because he practiced at night after working all day as a machinist and didn't want to wake his children or neighbors. Pass developed his own range of picking techniques, including fingerpicking, hybrid picking, and "flat picking." Chirag Gokani and Preston Wilson, both with Applied Research Laboratories and the University of Texas, Austin, greatly admired both Pass and Montgomery and decided to explore the underlying the acoustics of their distinctive playing, modeling the interactions of the thumb, fingers, and pick with a guitar string. They described their research during a meeting of the Acoustical Society of America in New Orleans, LA. Among their findings: Montgomery achieved his warm tone by playing closer to the bridge and mostly plucking at the string. Pass's rich tone arose from a combination of using a pick and playing closer to the guitar neck. There were also differences in how much a thumb, finger, and pick slip off the string:  use of the thumb (Montgomery) produced more of a "pluck" compared to the pick (Pass), which produced more of a "strike." Gokani and Wilson think their model could be used to synthesize digital guitars with a more realistic sound, as well as helping guitarists better emulate Pass and Montgomery. Sounds of an ancient underground city Credit: Sezin Nas Turkey is home to the underground city Derinkuyu, originally carved out inside soft volcanic rock around the 8th century BCE. It was later expanded to include four main ventilation channels (and some 50,000 smaller shafts) serving seven levels, which could be closed off from the inside with a large rolling stone. The city could hold up to 20,000 people and it  was connected to another underground city, Kaymakli, via tunnels. Derinkuyu helped protect Arab Muslims during the Arab-Byzantine wars, served as a refuge from the Ottomans in the 14th century, and as a haven for Armenians escaping persecution in the early 20th century, among other functions. The tunnels were rediscovered in the 1960s and about half of the city has been open to visitors since 2016. The site is naturally of great archaeological interest, but there has been little to no research on the acoustics of the site, particularly the ventilation channels—one of Derinkuyu's most unique features, according to Sezin Nas, an architectural acoustician at Istanbul Galata University in Turkey.  She gave a talk at a meeting of the Acoustical Society of America in New Orleans, LA, about her work on the site's acoustic environment. Nas analyzed a church, a living area, and a kitchen, measuring sound sources and reverberation patterns, among other factors, to create a 3D virtual soundscape. The hope is that a better understanding of this aspect of Derinkuyu could improve the design of future underground urban spaces—as well as one day using her virtual soundscape to enable visitors to experience the sounds of the city themselves. MIT's latest ping-pong robot Robots playing ping-pong have been a thing since the 1980s, of particular interest to scientists because it requires the robot to combine the slow, precise ability to grasp and pick up objects with dynamic, adaptable locomotion. Such robots need high-speed machine vision, fast motors and actuators, precise control, and the ability to make accurate predictions in real time, not to mention being able to develop a game strategy. More recent designs use AI techniques to allow the robots to "learn" from prior data to improve their performance. MIT researchers have built their own version of a ping-pong playing robot, incorporating a lightweight design and the ability to precisely return shots. They built on prior work developing the Humanoid, a small bipedal two-armed robot—specifically, modifying the Humanoid's arm by adding an extra degree of freedom to the wrist so the robot could control a ping-pong paddle. They tested their robot by mounting it on a ping-pong table and lobbing 150 balls at it from the other side of the table, capturing the action with high-speed cameras. The new bot can execute three different swing types (loop, drive, and chip) and during the trial runs it returned the ball with impressive accuracy across all three types: 88.4 percent, 89.2 percent, and 87.5 percent, respectively. Subsequent tweaks to theirrystem brought the robot's strike speed up to 19 meters per second (about 42 MPH), close to the 12 to 25 meters per second of advanced human players. The addition of control algorithms gave the robot the ability to aim. The robot still has limited mobility and reach because it has to be fixed to the ping-pong table but the MIT researchers plan to rig it to a gantry or wheeled platform in the future to address that shortcoming. Why orange cats are orange Credit: Astropulse/CC BY-SA 3.0 Cat lovers know orange cats are special for more than their unique coloring, but that's the quality that has intrigued scientists for almost a century. Sure, lots of animals have orange, ginger, or yellow hues, like tigers, orangutans, and golden retrievers. But in domestic cats that color is specifically linked to sex. Almost all orange cats are male. Scientists have now identified the genetic mutation responsible and it appears to be unique to cats, according to a paper published in the journal Current Biology. Prior work had narrowed down the region on the X chromosome most likely to contain the relevant mutation. The scientists knew that females usually have just one copy of the mutation and in that case have tortoiseshell (partially orange) coloring, although in rare cases, a female cat will be orange if both X chromosomes have the mutation. Over the last five to ten years, there has been an explosion in genome resources (including complete sequenced genomes) for cats which greatly aided the team's research, along with taking additional DNA samples from cats at spay and neuter clinics. From an initial pool of 51 candidate variants, the scientists narrowed it down to three genes, only one of which was likely to play any role in gene regulation: Arhgap36. It wasn't known to play any role in pigment cells in humans, mice, or non-orange cats. But orange cats are special; their mutation (sex-linked orange) turns on Arhgap36 expression in pigment cells (and only pigment cells), thereby interfering with the molecular pathway that controls coat color in other orange-shaded mammals. The scientists suggest that this is an example of how genes can acquire new functions, thereby enabling species to better adapt and evolve. DOI: Current Biology, 2025. 10.1016/j.cub.2025.03.075  (About DOIs). Not a Roman "massacre" after all Credit: Martin Smith In 1936, archaeologists excavating the Iron Age hill fort Maiden Castle in the UK unearthed dozens of human skeletons, all showing signs of lethal injuries to the head and upper body—likely inflicted with weaponry. At the time, this was interpreted as evidence of a pitched battle between the Britons of the local Durotriges tribe and invading Romans. The Romans slaughtered the native inhabitants, thereby bringing a sudden violent end to the Iron Age. At least that's the popular narrative that has prevailed ever since in countless popular articles, books, and documentaries. But a paper published in the Oxford Journal of Archaeology calls that narrative into question. Archaeologists at Bournemouth University have re-analyzed those burials, incorporating radiocarbon dating into their efforts. They concluded that those individuals didn't die in a single brutal battle. Rather, it was Britons killing other Britons over multiple generations between the first century BCE and the first century CE—most likely in periodic localized outbursts of violence in the lead-up to the Roman conquest of Britain. It's possible there are still many human remains waiting to be discovered at the site, which could shed further light on what happened at Maiden Castle. DOI: Oxford Journal of Archaeology, 2025. 10.1111/ojoa.12324  (About DOIs). Jennifer Ouellette Senior Writer Jennifer Ouellette Senior Writer Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban. 4 Comments
    13 Yorumlar 0 hisse senetleri
  • This giant microwave may change the future of war

    Imagine: China deploys hundreds of thousands of autonomous drones in the air, on the sea, and under the water—all armed with explosive warheads or small missiles. These machines descend in a swarm toward military installations on Taiwan and nearby US bases, and over the course of a few hours, a single robotic blitzkrieg overwhelms the US Pacific force before it can even begin to fight back. 

    Maybe it sounds like a new Michael Bay movie, but it’s the scenario that keeps the chief technology officer of the US Army up at night.

    “I’m hesitant to say it out loud so I don’t manifest it,” says Alex Miller, a longtime Army intelligence official who became the CTO to the Army’s chief of staff in 2023.

    Even if World War III doesn’t break out in the South China Sea, every US military installation around the world is vulnerable to the same tactics—as are the militaries of every other country around the world. The proliferation of cheap drones means just about any group with the wherewithal to assemble and launch a swarm could wreak havoc, no expensive jets or massive missile installations required. 

    While the US has precision missiles that can shoot these drones down, they don’t always succeed: A drone attack killed three US soldiers and injured dozens more at a base in the Jordanian desert last year. And each American missile costs orders of magnitude more than its targets, which limits their supply; countering thousand-dollar drones with missiles that cost hundreds of thousands, or even millions, of dollars per shot can only work for so long, even with a defense budget that could reach a trillion dollars next year.

    The US armed forces are now hunting for a solution—and they want it fast. Every branch of the service and a host of defense tech startups are testing out new weapons that promise to disable drones en masse. There are drones that slam into other drones like battering rams; drones that shoot out nets to ensnare quadcopter propellers; precision-guided Gatling guns that simply shoot drones out of the sky; electronic approaches, like GPS jammers and direct hacking tools; and lasers that melt holes clear through a target’s side.

    Then there are the microwaves: high-powered electronic devices that push out kilowatts of power to zap the circuits of a drone as if it were the tinfoil you forgot to take off your leftovers when you heated them up. 

    That’s where Epirus comes in. 

    When I went to visit the HQ of this 185-person startup in Torrance, California, earlier this year, I got a behind-the-scenes look at its massive microwave, called Leonidas, which the US Army is already betting on as a cutting-edge anti-drone weapon. The Army awarded Epirus a million contract in early 2023, topped that up with another million last fall, and is currently deploying a handful of the systems for testing with US troops in the Middle East and the Pacific. 

    Up close, the Leonidas that Epirus built for the Army looks like a two-foot-thick slab of metal the size of a garage door stuck on a swivel mount. Pop the back cover, and you can see that the slab is filled with dozens of individual microwave amplifier units in a grid. Each is about the size of a safe-deposit box and built around a chip made of gallium nitride, a semiconductor that can survive much higher voltages and temperatures than the typical silicon. 

    Leonidas sits on top of a trailer that a standard-issue Army truck can tow, and when it is powered on, the company’s software tells the grid of amps and antennas to shape the electromagnetic waves they’re blasting out with a phased array, precisely overlapping the microwave signals to mold the energy into a focused beam. Instead of needing to physically point a gun or parabolic dish at each of a thousand incoming drones, the Leonidas can flick between them at the speed of software.

    The Leonidas contains dozens of microwave amplifier units and can pivot to direct waves at incoming swarms of drones.EPIRUS

    Of course, this isn’t magic—there are practical limits on how much damage one array can do, and at what range—but the total effect could be described as an electromagnetic pulse emitter, a death ray for electronics, or a force field that could set up a protective barrier around military installations and drop drones the way a bug zapper fizzles a mob of mosquitoes.

    I walked through the nonclassified sections of the Leonidas factory floor, where a cluster of engineers working on weaponeering—the military term for figuring out exactly how much of a weapon, be it high explosive or microwave beam, is necessary to achieve a desired effect—ran tests in a warren of smaller anechoic rooms. Inside, they shot individual microwave units at a broad range of commercial and military drones, cycling through waveforms and power levels to try to find the signal that could fry each one with maximum efficiency. 

    On a live video feed from inside one of these foam-padded rooms, I watched a quadcopter drone spin its propellers and then, once the microwave emitter turned on, instantly stop short—first the propeller on the front left and then the rest. A drone hit with a Leonidas beam doesn’t explode—it just falls.

    Compared with the blast of a missile or the sizzle of a laser, it doesn’t look like much. But it could force enemies to come up with costlier ways of attacking that reduce the advantage of the drone swarm, and it could get around the inherent limitations of purely electronic or strictly physical defense systems. It could save lives.

    Epirus CEO Andy Lowery, a tall guy with sparkplug energy and a rapid-fire southern Illinois twang, doesn’t shy away from talking big about his product. As he told me during my visit, Leonidas is intended to lead a last stand, like the Spartan from whom the microwave takes its name—in this case, against hordes of unmanned aerial vehicles, or UAVs. While the actual range of the Leonidas system is kept secret, Lowery says the Army is looking for a solution that can reliably stop drones within a few kilometers. He told me, “They would like our system to be the owner of that final layer—to get any squeakers, any leakers, anything like that.”

    Now that they’ve told the world they “invented a force field,” Lowery added, the focus is on manufacturing at scale—before the drone swarms really start to descend or a nation with a major military decides to launch a new war. Before, in other words, Miller’s nightmare scenario becomes reality. 

    Why zap?

    Miller remembers well when the danger of small weaponized drones first appeared on his radar. Reports of Islamic State fighters strapping grenades to the bottom of commercial DJI Phantom quadcopters first emerged in late 2016 during the Battle of Mosul. “I went, ‘Oh, this is going to be bad,’ because basically it’s an airborne IED at that point,” he says.

    He’s tracked the danger as it’s built steadily since then, with advances in machine vision, AI coordination software, and suicide drone tactics only accelerating. 

    Then the war in Ukraine showed the world that cheap technology has fundamentally changed how warfare happens. We have watched in high-definition video how a cheap, off-the-shelf drone modified to carry a small bomb can be piloted directly into a faraway truck, tank, or group of troops to devastating effect. And larger suicide drones, also known as “loitering munitions,” can be produced for just tens of thousands of dollars and launched in massive salvos to hit soft targets or overwhelm more advanced military defenses through sheer numbers. 

    As a result, Miller, along with large swaths of the Pentagon and DC policy circles, believes that the current US arsenal for defending against these weapons is just too expensive and the tools in too short supply to truly match the threat.

    Just look at Yemen, a poor country where the Houthi military group has been under constant attack for the past decade. Armed with this new low-tech arsenal, in the past 18 months the rebel group has been able to bomb cargo ships and effectively disrupt global shipping in the Red Sea—part of an effort to apply pressure on Israel to stop its war in Gaza. The Houthis have also used missiles, suicide drones, and even drone boats to launch powerful attacks on US Navy ships sent to stop them.

    The most successful defense tech firm selling anti-drone weapons to the US military right now is Anduril, the company started by Palmer Luckey, the inventor of the Oculus VR headset, and a crew of cofounders from Oculus and defense data giant Palantir. In just the past few months, the Marines have chosen Anduril for counter-drone contracts that could be worth nearly million over the next decade, and the company has been working with Special Operations Command since 2022 on a counter-drone contract that could be worth nearly a billion dollars over a similar time frame. It’s unclear from the contracts what, exactly, Anduril is selling to each organization, but its weapons include electronic warfare jammers, jet-powered drone bombs, and propeller-driven Anvil drones designed to simply smash into enemy drones.

    In this arsenal, the cheapest way to stop a swarm of drones is electronic warfare: jamming the GPS or radio signals used to pilot the machines. But the intense drone battles in Ukraine have advanced the art of jamming and counter-jamming close to the point of stalemate. As a result, a new state of the art is emerging: unjammable drones that operate autonomously by using onboard processors to navigate via internal maps and computer vision, or even drones connected with 20-kilometer-long filaments of fiber-optic cable for tethered control.

    But unjammable doesn’t mean unzappable. Instead of using the scrambling method of a jammer, which employs an antenna to block the drone’s connection to a pilot or remote guidance system, the Leonidas microwave beam hits a drone body broadside. The energy finds its way into something electrical, whether the central flight controller or a tiny wire controlling a flap on a wing, to short-circuit whatever’s available.Tyler Miller, a senior systems engineer on Epirus’s weaponeering team, told me that they never know exactly which part of the target drone is going to go down first, but they’ve reliably seen the microwave signal get in somewhere to overload a circuit. “Based on the geometry and the way the wires are laid out,” he said, one of those wires is going to be the best path in. “Sometimes if we rotate the drone 90 degrees, you have a different motor go down first,” he added.

    The team has even tried wrapping target drones in copper tape, which would theoretically provide shielding, only to find that the microwave still finds a way in through moving propeller shafts or antennas that need to remain exposed for the drone to fly. 

    EPIRUS

    Leonidas also has an edge when it comes to downing a mass of drones at once. Physically hitting a drone out of the sky or lighting it up with a laser can be effective in situations where electronic warfare fails, but anti-drone drones can only take out one at a time, and lasers need to precisely aim and shoot. Epirus’s microwaves can damage everything in a roughly 60-degree arc from the Leonidas emitter simultaneously and keep on zapping and zapping; directed energy systems like this one never run out of ammo.

    As for cost, each Army Leonidas unit currently runs in the “low eight figures,” Lowery told me. Defense contract pricing can be opaque, but Epirus delivered four units for its million initial contract, giving a back-of-napkin price around million each. For comparison, Stinger missiles from Raytheon, which soldiers shoot at enemy aircraft or drones from a shoulder-mounted launcher, cost hundreds of thousands of dollars a pop, meaning the Leonidas could start costing lessafter it downs the first wave of a swarm.

    Raytheon’s radar, reversed

    Epirus is part of a new wave of venture-capital-backed defense companies trying to change the way weapons are created—and the way the Pentagon buys them. The largest defense companies, firms like Raytheon, Boeing, Northrop Grumman, and Lockheed Martin, typically develop new weapons in response to research grants and cost-plus contracts, in which the US Department of Defense guarantees a certain profit margin to firms building products that match their laundry list of technical specifications. These programs have kept the military supplied with cutting-edge weapons for decades, but the results may be exquisite pieces of military machinery delivered years late and billions of dollars over budget.

    Rather than building to minutely detailed specs, the new crop of military contractors aim to produce products on a quick time frame to solve a problem and then fine-tune them as they pitch to the military. The model, pioneered by Palantir and SpaceX, has since propelled companies like Anduril, Shield AI, and dozens of other smaller startups into the business of war as venture capital piles tens of billions of dollars into defense.

    Like Anduril, Epirus has direct Palantir roots; it was cofounded by Joe Lonsdale, who also cofounded Palantir, and John Tenet, Lonsdale’s colleague at the time at his venture fund, 8VC. 

    While Epirus is doing business in the new mode, its roots are in the old—specifically in Raytheon, a pioneer in the field of microwave technology. Cofounded by MIT professor Vannevar Bush in 1922, it manufactured vacuum tubes, like those found in old radios. But the company became synonymous with electronic defense during World War II, when Bush spun up a lab to develop early microwave radar technology invented by the British into a workable product, and Raytheon then began mass-producing microwave tubes—known as magnetrons—for the US war effort. By the end of the war in 1945, Raytheon was making 80% of the magnetrons powering Allied radar across the world.

    From padded foam chambers at the Epirus HQ, Leonidas devices can be safely tested on drones.EPIRUS

    Large tubes remained the best way to emit high-power microwaves for more than half a century, handily outperforming silicon-based solid-state amplifiers. They’re still around—the microwave on your kitchen counter runs on a vacuum tube magnetron. But tubes have downsides: They’re hot, they’re big, and they require upkeep.By the 2000s, new methods of building solid-state amplifiers out of materials like gallium nitride started to mature and were able to handle more power than silicon without melting or shorting out. The US Navy spent hundreds of millions of dollars on cutting-edge microwave contracts, one for a project at Raytheon called Next Generation Jammer—geared specifically toward designing a new way to make high-powered microwaves that work at extremely long distances.

    Lowery, the Epirus CEO, began his career working on nuclear reactors on Navy aircraft carriers before he became the chief engineer for Next Generation Jammer at Raytheon in 2010. There, he and his team worked on a system that relied on many of the same fundamentals that now power the Leonidas—using the same type of amplifier material and antenna setup to fry the electronics of a small target at much closer range rather than disrupting the radar of a target hundreds of miles away. 

    The similarity is not a coincidence: Two engineers from Next Generation Jammer helped launch Epirus in 2018. Lowery—who by then was working at the augmented-reality startup RealWear, which makes industrial smart glasses—joined Epirus in 2021 to run product development and was asked to take the top spot as CEO in 2023, as Leonidas became a fully formed machine. Much of the founding team has since departed for other projects, but Raytheon still runs through the company’s collective CV: ex-Raytheon radar engineer Matt Markel started in January as the new CTO, and Epirus’s chief engineer for defense, its VP of engineering, its VP of operations, and a number of employees all have Raytheon roots as well.

    Markel tells me that the Epirus way of working wouldn’t have flown at one of the big defense contractors: “They never would have tried spinning off the technology into a new application without a contract lined up.” The Epirus engineers saw the use case, raised money to start building Leonidas, and already had prototypes in the works before any military branch started awarding money to work on the project.

    Waiting for the starting gun

    On the wall of Lowery’s office are two mementos from testing days at an Army proving ground: a trophy wing from a larger drone, signed by the whole testing team, and a framed photo documenting the Leonidas’s carnage—a stack of dozens of inoperative drones piled up in a heap. 

    Despite what seems to have been an impressive test show, it’s still impossible from the outside to determine whether Epirus’s tech is ready to fully deliver if the swarms descend. 

    The Army would not comment specifically on the efficacy of any new weapons in testing or early deployment, including the Leonidas system. A spokesperson for the Army’s Rapid Capabilities and Critical Technologies Office, or RCCTO, which is the subsection responsible for contracting with Epirus to date, would only say in a statement that it is “committed to developing and fielding innovative Directed Energy solutions to address evolving threats.” 

    But various high-ranking officers appear to be giving Epirus a public vote of confidence. The three-star general who runs RCCTO and oversaw the Leonidas testing last summer told Breaking Defense that “the system actually worked very well,” even if there was work to be done on “how the weapon system fits into the larger kill chain.”

    And when former secretary of the Army Christine Wormuth, then the service’s highest-ranking civilian, gave a parting interview this past January, she mentioned Epirus in all but name, citing “one company” that is “using high-powered microwaves to basically be able to kill swarms of drones.” She called that kind of capability “critical for the Army.” 

    The Army isn’t the only branch interested in the microwave weapon. On Epirus’s factory floor when I visited, alongside the big beige Leonidases commissioned by the Army, engineers were building a smaller expeditionary version for the Marines, painted green, which it delivered in late April. Videos show that when it put some of its microwave emitters on a dock and tested them out for the Navy last summer, the microwaves left their targets dead in the water—successfully frying the circuits of outboard motors like the ones propelling Houthi drone boats. 

    Epirus is also currently working on an even smaller version of the Leonidas that can mount on top of the Army’s Stryker combat vehicles, and it’s testing out attaching a single microwave unit to a small airborne drone, which could work as a highly focused zapper to disable cars, data centers, or single enemy drones. 

    Epirus’s microwave technology is also being tested in devices smaller than the traditional Leonidas. EPIRUS

    While neither the Army nor the Navy has yet to announce a contract to start buying Epirus’s systems at scale, the company and its investors are actively preparing for the big orders to start rolling in. It raised million in a funding round in early March to get ready to make as many Leonidases as possible in the coming years, adding to the more than million it’s raised since opening its doors in 2018.

    “If you invent a force field that works,” Lowery boasts, “you really get a lot of attention.”

    The task for Epirus now, assuming that its main customers pull the trigger and start buying more Leonidases, is ramping up production while advancing the tech in its systems. Then there are the more prosaic problems of staffing, assembly, and testing at scale. For future generations, Lowery told me, the goal is refining the antenna design and integrating higher-powered microwave amplifiers to push the output into the tens of kilowatts, allowing for increased range and efficacy. 

    While this could be made harder by Trump’s global trade war, Lowery says he’s not worried about their supply chain; while China produces 98% of the world’s gallium, according to the US Geological Survey, and has choked off exports to the US, Epirus’s chip supplier uses recycled gallium from Japan. 

    The other outside challenge may be that Epirus isn’t the only company building a drone zapper. One of China’s state-owned defense companies has been working on its own anti-drone high-powered microwave weapon called the Hurricane, which it displayed at a major military show in late 2024. 

    It may be a sign that anti-electronics force fields will become common among the world’s militaries—and if so, the future of war is unlikely to go back to the status quo ante, and it might zag in a different direction yet again. But military planners believe it’s crucial for the US not to be left behind. So if it works as promised, Epirus could very well change the way that war will play out in the coming decade. 

    While Miller, the Army CTO, can’t speak directly to Epirus or any specific system, he will say that he believes anti-drone measures are going to have to become ubiquitous for US soldiers. “Counter-UASunfortunately is going to be like counter-IED,” he says. “It’s going to be every soldier’s job to think about UAS threats the same way it was to think about IEDs.” 

    And, he adds, it’s his job and his colleagues’ to make sure that tech so effective it works like “almost magic” is in the hands of the average rifleman. To that end, Lowery told me, Epirus is designing the Leonidas control system to work simply for troops, allowing them to identify a cluster of targets and start zapping with just a click of a button—but only extensive use in the field can prove that out.

    Epirus CEO Andy Lowery sees the Leonidas as providing a last line of defense against UAVs.EPIRUS

    In the not-too-distant future, Lowery says, this could mean setting up along the US-Mexico border. But the grandest vision for Epirus’s tech that he says he’s heard is for a city-scale Leonidas along the lines of a ballistic missile defense radar system called PAVE PAWS, which takes up an entire 105-foot-tall building and can detect distant nuclear missile launches. The US set up four in the 1980s, and Taiwan currently has one up on a mountain south of Taipei. Fill a similar-size building full of microwave emitters, and the beam could reach out “10 or 15 miles,” Lowery told me, with one sitting sentinel over Taipei in the north and another over Kaohsiung in the south of Taiwan.

    Riffing in Greek mythological mode, Lowery said of drones, “I call all these mischief makers. Whether they’re doing drugs or guns across the border or they’re flying over Langleythey’re spying on F-35s, they’re all like Icarus. You remember Icarus, with his wax wings? Flying all around—‘Nobody’s going to touch me, nobody’s going to ever hurt me.’”

    “We built one hell of a wax-wing melter.” 

    Sam Dean is a reporter focusing on business, tech, and defense. He is writing a book about the recent history of Silicon Valley returning to work with the Pentagon for Viking Press and covering the defense tech industry for a number of publications. Previously, he was a business reporter at the Los Angeles Times.

    This piece has been updated to clarify that Alex Miller is a civilian intelligence official. 
    #this #giant #microwave #change #future
    This giant microwave may change the future of war
    Imagine: China deploys hundreds of thousands of autonomous drones in the air, on the sea, and under the water—all armed with explosive warheads or small missiles. These machines descend in a swarm toward military installations on Taiwan and nearby US bases, and over the course of a few hours, a single robotic blitzkrieg overwhelms the US Pacific force before it can even begin to fight back.  Maybe it sounds like a new Michael Bay movie, but it’s the scenario that keeps the chief technology officer of the US Army up at night. “I’m hesitant to say it out loud so I don’t manifest it,” says Alex Miller, a longtime Army intelligence official who became the CTO to the Army’s chief of staff in 2023. Even if World War III doesn’t break out in the South China Sea, every US military installation around the world is vulnerable to the same tactics—as are the militaries of every other country around the world. The proliferation of cheap drones means just about any group with the wherewithal to assemble and launch a swarm could wreak havoc, no expensive jets or massive missile installations required.  While the US has precision missiles that can shoot these drones down, they don’t always succeed: A drone attack killed three US soldiers and injured dozens more at a base in the Jordanian desert last year. And each American missile costs orders of magnitude more than its targets, which limits their supply; countering thousand-dollar drones with missiles that cost hundreds of thousands, or even millions, of dollars per shot can only work for so long, even with a defense budget that could reach a trillion dollars next year. The US armed forces are now hunting for a solution—and they want it fast. Every branch of the service and a host of defense tech startups are testing out new weapons that promise to disable drones en masse. There are drones that slam into other drones like battering rams; drones that shoot out nets to ensnare quadcopter propellers; precision-guided Gatling guns that simply shoot drones out of the sky; electronic approaches, like GPS jammers and direct hacking tools; and lasers that melt holes clear through a target’s side. Then there are the microwaves: high-powered electronic devices that push out kilowatts of power to zap the circuits of a drone as if it were the tinfoil you forgot to take off your leftovers when you heated them up.  That’s where Epirus comes in.  When I went to visit the HQ of this 185-person startup in Torrance, California, earlier this year, I got a behind-the-scenes look at its massive microwave, called Leonidas, which the US Army is already betting on as a cutting-edge anti-drone weapon. The Army awarded Epirus a million contract in early 2023, topped that up with another million last fall, and is currently deploying a handful of the systems for testing with US troops in the Middle East and the Pacific.  Up close, the Leonidas that Epirus built for the Army looks like a two-foot-thick slab of metal the size of a garage door stuck on a swivel mount. Pop the back cover, and you can see that the slab is filled with dozens of individual microwave amplifier units in a grid. Each is about the size of a safe-deposit box and built around a chip made of gallium nitride, a semiconductor that can survive much higher voltages and temperatures than the typical silicon.  Leonidas sits on top of a trailer that a standard-issue Army truck can tow, and when it is powered on, the company’s software tells the grid of amps and antennas to shape the electromagnetic waves they’re blasting out with a phased array, precisely overlapping the microwave signals to mold the energy into a focused beam. Instead of needing to physically point a gun or parabolic dish at each of a thousand incoming drones, the Leonidas can flick between them at the speed of software. The Leonidas contains dozens of microwave amplifier units and can pivot to direct waves at incoming swarms of drones.EPIRUS Of course, this isn’t magic—there are practical limits on how much damage one array can do, and at what range—but the total effect could be described as an electromagnetic pulse emitter, a death ray for electronics, or a force field that could set up a protective barrier around military installations and drop drones the way a bug zapper fizzles a mob of mosquitoes. I walked through the nonclassified sections of the Leonidas factory floor, where a cluster of engineers working on weaponeering—the military term for figuring out exactly how much of a weapon, be it high explosive or microwave beam, is necessary to achieve a desired effect—ran tests in a warren of smaller anechoic rooms. Inside, they shot individual microwave units at a broad range of commercial and military drones, cycling through waveforms and power levels to try to find the signal that could fry each one with maximum efficiency.  On a live video feed from inside one of these foam-padded rooms, I watched a quadcopter drone spin its propellers and then, once the microwave emitter turned on, instantly stop short—first the propeller on the front left and then the rest. A drone hit with a Leonidas beam doesn’t explode—it just falls. Compared with the blast of a missile or the sizzle of a laser, it doesn’t look like much. But it could force enemies to come up with costlier ways of attacking that reduce the advantage of the drone swarm, and it could get around the inherent limitations of purely electronic or strictly physical defense systems. It could save lives. Epirus CEO Andy Lowery, a tall guy with sparkplug energy and a rapid-fire southern Illinois twang, doesn’t shy away from talking big about his product. As he told me during my visit, Leonidas is intended to lead a last stand, like the Spartan from whom the microwave takes its name—in this case, against hordes of unmanned aerial vehicles, or UAVs. While the actual range of the Leonidas system is kept secret, Lowery says the Army is looking for a solution that can reliably stop drones within a few kilometers. He told me, “They would like our system to be the owner of that final layer—to get any squeakers, any leakers, anything like that.” Now that they’ve told the world they “invented a force field,” Lowery added, the focus is on manufacturing at scale—before the drone swarms really start to descend or a nation with a major military decides to launch a new war. Before, in other words, Miller’s nightmare scenario becomes reality.  Why zap? Miller remembers well when the danger of small weaponized drones first appeared on his radar. Reports of Islamic State fighters strapping grenades to the bottom of commercial DJI Phantom quadcopters first emerged in late 2016 during the Battle of Mosul. “I went, ‘Oh, this is going to be bad,’ because basically it’s an airborne IED at that point,” he says. He’s tracked the danger as it’s built steadily since then, with advances in machine vision, AI coordination software, and suicide drone tactics only accelerating.  Then the war in Ukraine showed the world that cheap technology has fundamentally changed how warfare happens. We have watched in high-definition video how a cheap, off-the-shelf drone modified to carry a small bomb can be piloted directly into a faraway truck, tank, or group of troops to devastating effect. And larger suicide drones, also known as “loitering munitions,” can be produced for just tens of thousands of dollars and launched in massive salvos to hit soft targets or overwhelm more advanced military defenses through sheer numbers.  As a result, Miller, along with large swaths of the Pentagon and DC policy circles, believes that the current US arsenal for defending against these weapons is just too expensive and the tools in too short supply to truly match the threat. Just look at Yemen, a poor country where the Houthi military group has been under constant attack for the past decade. Armed with this new low-tech arsenal, in the past 18 months the rebel group has been able to bomb cargo ships and effectively disrupt global shipping in the Red Sea—part of an effort to apply pressure on Israel to stop its war in Gaza. The Houthis have also used missiles, suicide drones, and even drone boats to launch powerful attacks on US Navy ships sent to stop them. The most successful defense tech firm selling anti-drone weapons to the US military right now is Anduril, the company started by Palmer Luckey, the inventor of the Oculus VR headset, and a crew of cofounders from Oculus and defense data giant Palantir. In just the past few months, the Marines have chosen Anduril for counter-drone contracts that could be worth nearly million over the next decade, and the company has been working with Special Operations Command since 2022 on a counter-drone contract that could be worth nearly a billion dollars over a similar time frame. It’s unclear from the contracts what, exactly, Anduril is selling to each organization, but its weapons include electronic warfare jammers, jet-powered drone bombs, and propeller-driven Anvil drones designed to simply smash into enemy drones. In this arsenal, the cheapest way to stop a swarm of drones is electronic warfare: jamming the GPS or radio signals used to pilot the machines. But the intense drone battles in Ukraine have advanced the art of jamming and counter-jamming close to the point of stalemate. As a result, a new state of the art is emerging: unjammable drones that operate autonomously by using onboard processors to navigate via internal maps and computer vision, or even drones connected with 20-kilometer-long filaments of fiber-optic cable for tethered control. But unjammable doesn’t mean unzappable. Instead of using the scrambling method of a jammer, which employs an antenna to block the drone’s connection to a pilot or remote guidance system, the Leonidas microwave beam hits a drone body broadside. The energy finds its way into something electrical, whether the central flight controller or a tiny wire controlling a flap on a wing, to short-circuit whatever’s available.Tyler Miller, a senior systems engineer on Epirus’s weaponeering team, told me that they never know exactly which part of the target drone is going to go down first, but they’ve reliably seen the microwave signal get in somewhere to overload a circuit. “Based on the geometry and the way the wires are laid out,” he said, one of those wires is going to be the best path in. “Sometimes if we rotate the drone 90 degrees, you have a different motor go down first,” he added. The team has even tried wrapping target drones in copper tape, which would theoretically provide shielding, only to find that the microwave still finds a way in through moving propeller shafts or antennas that need to remain exposed for the drone to fly.  EPIRUS Leonidas also has an edge when it comes to downing a mass of drones at once. Physically hitting a drone out of the sky or lighting it up with a laser can be effective in situations where electronic warfare fails, but anti-drone drones can only take out one at a time, and lasers need to precisely aim and shoot. Epirus’s microwaves can damage everything in a roughly 60-degree arc from the Leonidas emitter simultaneously and keep on zapping and zapping; directed energy systems like this one never run out of ammo. As for cost, each Army Leonidas unit currently runs in the “low eight figures,” Lowery told me. Defense contract pricing can be opaque, but Epirus delivered four units for its million initial contract, giving a back-of-napkin price around million each. For comparison, Stinger missiles from Raytheon, which soldiers shoot at enemy aircraft or drones from a shoulder-mounted launcher, cost hundreds of thousands of dollars a pop, meaning the Leonidas could start costing lessafter it downs the first wave of a swarm. Raytheon’s radar, reversed Epirus is part of a new wave of venture-capital-backed defense companies trying to change the way weapons are created—and the way the Pentagon buys them. The largest defense companies, firms like Raytheon, Boeing, Northrop Grumman, and Lockheed Martin, typically develop new weapons in response to research grants and cost-plus contracts, in which the US Department of Defense guarantees a certain profit margin to firms building products that match their laundry list of technical specifications. These programs have kept the military supplied with cutting-edge weapons for decades, but the results may be exquisite pieces of military machinery delivered years late and billions of dollars over budget. Rather than building to minutely detailed specs, the new crop of military contractors aim to produce products on a quick time frame to solve a problem and then fine-tune them as they pitch to the military. The model, pioneered by Palantir and SpaceX, has since propelled companies like Anduril, Shield AI, and dozens of other smaller startups into the business of war as venture capital piles tens of billions of dollars into defense. Like Anduril, Epirus has direct Palantir roots; it was cofounded by Joe Lonsdale, who also cofounded Palantir, and John Tenet, Lonsdale’s colleague at the time at his venture fund, 8VC.  While Epirus is doing business in the new mode, its roots are in the old—specifically in Raytheon, a pioneer in the field of microwave technology. Cofounded by MIT professor Vannevar Bush in 1922, it manufactured vacuum tubes, like those found in old radios. But the company became synonymous with electronic defense during World War II, when Bush spun up a lab to develop early microwave radar technology invented by the British into a workable product, and Raytheon then began mass-producing microwave tubes—known as magnetrons—for the US war effort. By the end of the war in 1945, Raytheon was making 80% of the magnetrons powering Allied radar across the world. From padded foam chambers at the Epirus HQ, Leonidas devices can be safely tested on drones.EPIRUS Large tubes remained the best way to emit high-power microwaves for more than half a century, handily outperforming silicon-based solid-state amplifiers. They’re still around—the microwave on your kitchen counter runs on a vacuum tube magnetron. But tubes have downsides: They’re hot, they’re big, and they require upkeep.By the 2000s, new methods of building solid-state amplifiers out of materials like gallium nitride started to mature and were able to handle more power than silicon without melting or shorting out. The US Navy spent hundreds of millions of dollars on cutting-edge microwave contracts, one for a project at Raytheon called Next Generation Jammer—geared specifically toward designing a new way to make high-powered microwaves that work at extremely long distances. Lowery, the Epirus CEO, began his career working on nuclear reactors on Navy aircraft carriers before he became the chief engineer for Next Generation Jammer at Raytheon in 2010. There, he and his team worked on a system that relied on many of the same fundamentals that now power the Leonidas—using the same type of amplifier material and antenna setup to fry the electronics of a small target at much closer range rather than disrupting the radar of a target hundreds of miles away.  The similarity is not a coincidence: Two engineers from Next Generation Jammer helped launch Epirus in 2018. Lowery—who by then was working at the augmented-reality startup RealWear, which makes industrial smart glasses—joined Epirus in 2021 to run product development and was asked to take the top spot as CEO in 2023, as Leonidas became a fully formed machine. Much of the founding team has since departed for other projects, but Raytheon still runs through the company’s collective CV: ex-Raytheon radar engineer Matt Markel started in January as the new CTO, and Epirus’s chief engineer for defense, its VP of engineering, its VP of operations, and a number of employees all have Raytheon roots as well. Markel tells me that the Epirus way of working wouldn’t have flown at one of the big defense contractors: “They never would have tried spinning off the technology into a new application without a contract lined up.” The Epirus engineers saw the use case, raised money to start building Leonidas, and already had prototypes in the works before any military branch started awarding money to work on the project. Waiting for the starting gun On the wall of Lowery’s office are two mementos from testing days at an Army proving ground: a trophy wing from a larger drone, signed by the whole testing team, and a framed photo documenting the Leonidas’s carnage—a stack of dozens of inoperative drones piled up in a heap.  Despite what seems to have been an impressive test show, it’s still impossible from the outside to determine whether Epirus’s tech is ready to fully deliver if the swarms descend.  The Army would not comment specifically on the efficacy of any new weapons in testing or early deployment, including the Leonidas system. A spokesperson for the Army’s Rapid Capabilities and Critical Technologies Office, or RCCTO, which is the subsection responsible for contracting with Epirus to date, would only say in a statement that it is “committed to developing and fielding innovative Directed Energy solutions to address evolving threats.”  But various high-ranking officers appear to be giving Epirus a public vote of confidence. The three-star general who runs RCCTO and oversaw the Leonidas testing last summer told Breaking Defense that “the system actually worked very well,” even if there was work to be done on “how the weapon system fits into the larger kill chain.” And when former secretary of the Army Christine Wormuth, then the service’s highest-ranking civilian, gave a parting interview this past January, she mentioned Epirus in all but name, citing “one company” that is “using high-powered microwaves to basically be able to kill swarms of drones.” She called that kind of capability “critical for the Army.”  The Army isn’t the only branch interested in the microwave weapon. On Epirus’s factory floor when I visited, alongside the big beige Leonidases commissioned by the Army, engineers were building a smaller expeditionary version for the Marines, painted green, which it delivered in late April. Videos show that when it put some of its microwave emitters on a dock and tested them out for the Navy last summer, the microwaves left their targets dead in the water—successfully frying the circuits of outboard motors like the ones propelling Houthi drone boats.  Epirus is also currently working on an even smaller version of the Leonidas that can mount on top of the Army’s Stryker combat vehicles, and it’s testing out attaching a single microwave unit to a small airborne drone, which could work as a highly focused zapper to disable cars, data centers, or single enemy drones.  Epirus’s microwave technology is also being tested in devices smaller than the traditional Leonidas. EPIRUS While neither the Army nor the Navy has yet to announce a contract to start buying Epirus’s systems at scale, the company and its investors are actively preparing for the big orders to start rolling in. It raised million in a funding round in early March to get ready to make as many Leonidases as possible in the coming years, adding to the more than million it’s raised since opening its doors in 2018. “If you invent a force field that works,” Lowery boasts, “you really get a lot of attention.” The task for Epirus now, assuming that its main customers pull the trigger and start buying more Leonidases, is ramping up production while advancing the tech in its systems. Then there are the more prosaic problems of staffing, assembly, and testing at scale. For future generations, Lowery told me, the goal is refining the antenna design and integrating higher-powered microwave amplifiers to push the output into the tens of kilowatts, allowing for increased range and efficacy.  While this could be made harder by Trump’s global trade war, Lowery says he’s not worried about their supply chain; while China produces 98% of the world’s gallium, according to the US Geological Survey, and has choked off exports to the US, Epirus’s chip supplier uses recycled gallium from Japan.  The other outside challenge may be that Epirus isn’t the only company building a drone zapper. One of China’s state-owned defense companies has been working on its own anti-drone high-powered microwave weapon called the Hurricane, which it displayed at a major military show in late 2024.  It may be a sign that anti-electronics force fields will become common among the world’s militaries—and if so, the future of war is unlikely to go back to the status quo ante, and it might zag in a different direction yet again. But military planners believe it’s crucial for the US not to be left behind. So if it works as promised, Epirus could very well change the way that war will play out in the coming decade.  While Miller, the Army CTO, can’t speak directly to Epirus or any specific system, he will say that he believes anti-drone measures are going to have to become ubiquitous for US soldiers. “Counter-UASunfortunately is going to be like counter-IED,” he says. “It’s going to be every soldier’s job to think about UAS threats the same way it was to think about IEDs.”  And, he adds, it’s his job and his colleagues’ to make sure that tech so effective it works like “almost magic” is in the hands of the average rifleman. To that end, Lowery told me, Epirus is designing the Leonidas control system to work simply for troops, allowing them to identify a cluster of targets and start zapping with just a click of a button—but only extensive use in the field can prove that out. Epirus CEO Andy Lowery sees the Leonidas as providing a last line of defense against UAVs.EPIRUS In the not-too-distant future, Lowery says, this could mean setting up along the US-Mexico border. But the grandest vision for Epirus’s tech that he says he’s heard is for a city-scale Leonidas along the lines of a ballistic missile defense radar system called PAVE PAWS, which takes up an entire 105-foot-tall building and can detect distant nuclear missile launches. The US set up four in the 1980s, and Taiwan currently has one up on a mountain south of Taipei. Fill a similar-size building full of microwave emitters, and the beam could reach out “10 or 15 miles,” Lowery told me, with one sitting sentinel over Taipei in the north and another over Kaohsiung in the south of Taiwan. Riffing in Greek mythological mode, Lowery said of drones, “I call all these mischief makers. Whether they’re doing drugs or guns across the border or they’re flying over Langleythey’re spying on F-35s, they’re all like Icarus. You remember Icarus, with his wax wings? Flying all around—‘Nobody’s going to touch me, nobody’s going to ever hurt me.’” “We built one hell of a wax-wing melter.”  Sam Dean is a reporter focusing on business, tech, and defense. He is writing a book about the recent history of Silicon Valley returning to work with the Pentagon for Viking Press and covering the defense tech industry for a number of publications. Previously, he was a business reporter at the Los Angeles Times. This piece has been updated to clarify that Alex Miller is a civilian intelligence official.  #this #giant #microwave #change #future
    WWW.TECHNOLOGYREVIEW.COM
    This giant microwave may change the future of war
    Imagine: China deploys hundreds of thousands of autonomous drones in the air, on the sea, and under the water—all armed with explosive warheads or small missiles. These machines descend in a swarm toward military installations on Taiwan and nearby US bases, and over the course of a few hours, a single robotic blitzkrieg overwhelms the US Pacific force before it can even begin to fight back.  Maybe it sounds like a new Michael Bay movie, but it’s the scenario that keeps the chief technology officer of the US Army up at night. “I’m hesitant to say it out loud so I don’t manifest it,” says Alex Miller, a longtime Army intelligence official who became the CTO to the Army’s chief of staff in 2023. Even if World War III doesn’t break out in the South China Sea, every US military installation around the world is vulnerable to the same tactics—as are the militaries of every other country around the world. The proliferation of cheap drones means just about any group with the wherewithal to assemble and launch a swarm could wreak havoc, no expensive jets or massive missile installations required.  While the US has precision missiles that can shoot these drones down, they don’t always succeed: A drone attack killed three US soldiers and injured dozens more at a base in the Jordanian desert last year. And each American missile costs orders of magnitude more than its targets, which limits their supply; countering thousand-dollar drones with missiles that cost hundreds of thousands, or even millions, of dollars per shot can only work for so long, even with a defense budget that could reach a trillion dollars next year. The US armed forces are now hunting for a solution—and they want it fast. Every branch of the service and a host of defense tech startups are testing out new weapons that promise to disable drones en masse. There are drones that slam into other drones like battering rams; drones that shoot out nets to ensnare quadcopter propellers; precision-guided Gatling guns that simply shoot drones out of the sky; electronic approaches, like GPS jammers and direct hacking tools; and lasers that melt holes clear through a target’s side. Then there are the microwaves: high-powered electronic devices that push out kilowatts of power to zap the circuits of a drone as if it were the tinfoil you forgot to take off your leftovers when you heated them up.  That’s where Epirus comes in.  When I went to visit the HQ of this 185-person startup in Torrance, California, earlier this year, I got a behind-the-scenes look at its massive microwave, called Leonidas, which the US Army is already betting on as a cutting-edge anti-drone weapon. The Army awarded Epirus a $66 million contract in early 2023, topped that up with another $17 million last fall, and is currently deploying a handful of the systems for testing with US troops in the Middle East and the Pacific. (The Army won’t get into specifics on the location of the weapons in the Middle East but published a report of a live-fire test in the Philippines in early May.)  Up close, the Leonidas that Epirus built for the Army looks like a two-foot-thick slab of metal the size of a garage door stuck on a swivel mount. Pop the back cover, and you can see that the slab is filled with dozens of individual microwave amplifier units in a grid. Each is about the size of a safe-deposit box and built around a chip made of gallium nitride, a semiconductor that can survive much higher voltages and temperatures than the typical silicon.  Leonidas sits on top of a trailer that a standard-issue Army truck can tow, and when it is powered on, the company’s software tells the grid of amps and antennas to shape the electromagnetic waves they’re blasting out with a phased array, precisely overlapping the microwave signals to mold the energy into a focused beam. Instead of needing to physically point a gun or parabolic dish at each of a thousand incoming drones, the Leonidas can flick between them at the speed of software. The Leonidas contains dozens of microwave amplifier units and can pivot to direct waves at incoming swarms of drones.EPIRUS Of course, this isn’t magic—there are practical limits on how much damage one array can do, and at what range—but the total effect could be described as an electromagnetic pulse emitter, a death ray for electronics, or a force field that could set up a protective barrier around military installations and drop drones the way a bug zapper fizzles a mob of mosquitoes. I walked through the nonclassified sections of the Leonidas factory floor, where a cluster of engineers working on weaponeering—the military term for figuring out exactly how much of a weapon, be it high explosive or microwave beam, is necessary to achieve a desired effect—ran tests in a warren of smaller anechoic rooms. Inside, they shot individual microwave units at a broad range of commercial and military drones, cycling through waveforms and power levels to try to find the signal that could fry each one with maximum efficiency.  On a live video feed from inside one of these foam-padded rooms, I watched a quadcopter drone spin its propellers and then, once the microwave emitter turned on, instantly stop short—first the propeller on the front left and then the rest. A drone hit with a Leonidas beam doesn’t explode—it just falls. Compared with the blast of a missile or the sizzle of a laser, it doesn’t look like much. But it could force enemies to come up with costlier ways of attacking that reduce the advantage of the drone swarm, and it could get around the inherent limitations of purely electronic or strictly physical defense systems. It could save lives. Epirus CEO Andy Lowery, a tall guy with sparkplug energy and a rapid-fire southern Illinois twang, doesn’t shy away from talking big about his product. As he told me during my visit, Leonidas is intended to lead a last stand, like the Spartan from whom the microwave takes its name—in this case, against hordes of unmanned aerial vehicles, or UAVs. While the actual range of the Leonidas system is kept secret, Lowery says the Army is looking for a solution that can reliably stop drones within a few kilometers. He told me, “They would like our system to be the owner of that final layer—to get any squeakers, any leakers, anything like that.” Now that they’ve told the world they “invented a force field,” Lowery added, the focus is on manufacturing at scale—before the drone swarms really start to descend or a nation with a major military decides to launch a new war. Before, in other words, Miller’s nightmare scenario becomes reality.  Why zap? Miller remembers well when the danger of small weaponized drones first appeared on his radar. Reports of Islamic State fighters strapping grenades to the bottom of commercial DJI Phantom quadcopters first emerged in late 2016 during the Battle of Mosul. “I went, ‘Oh, this is going to be bad,’ because basically it’s an airborne IED at that point,” he says. He’s tracked the danger as it’s built steadily since then, with advances in machine vision, AI coordination software, and suicide drone tactics only accelerating.  Then the war in Ukraine showed the world that cheap technology has fundamentally changed how warfare happens. We have watched in high-definition video how a cheap, off-the-shelf drone modified to carry a small bomb can be piloted directly into a faraway truck, tank, or group of troops to devastating effect. And larger suicide drones, also known as “loitering munitions,” can be produced for just tens of thousands of dollars and launched in massive salvos to hit soft targets or overwhelm more advanced military defenses through sheer numbers.  As a result, Miller, along with large swaths of the Pentagon and DC policy circles, believes that the current US arsenal for defending against these weapons is just too expensive and the tools in too short supply to truly match the threat. Just look at Yemen, a poor country where the Houthi military group has been under constant attack for the past decade. Armed with this new low-tech arsenal, in the past 18 months the rebel group has been able to bomb cargo ships and effectively disrupt global shipping in the Red Sea—part of an effort to apply pressure on Israel to stop its war in Gaza. The Houthis have also used missiles, suicide drones, and even drone boats to launch powerful attacks on US Navy ships sent to stop them. The most successful defense tech firm selling anti-drone weapons to the US military right now is Anduril, the company started by Palmer Luckey, the inventor of the Oculus VR headset, and a crew of cofounders from Oculus and defense data giant Palantir. In just the past few months, the Marines have chosen Anduril for counter-drone contracts that could be worth nearly $850 million over the next decade, and the company has been working with Special Operations Command since 2022 on a counter-drone contract that could be worth nearly a billion dollars over a similar time frame. It’s unclear from the contracts what, exactly, Anduril is selling to each organization, but its weapons include electronic warfare jammers, jet-powered drone bombs, and propeller-driven Anvil drones designed to simply smash into enemy drones. In this arsenal, the cheapest way to stop a swarm of drones is electronic warfare: jamming the GPS or radio signals used to pilot the machines. But the intense drone battles in Ukraine have advanced the art of jamming and counter-jamming close to the point of stalemate. As a result, a new state of the art is emerging: unjammable drones that operate autonomously by using onboard processors to navigate via internal maps and computer vision, or even drones connected with 20-kilometer-long filaments of fiber-optic cable for tethered control. But unjammable doesn’t mean unzappable. Instead of using the scrambling method of a jammer, which employs an antenna to block the drone’s connection to a pilot or remote guidance system, the Leonidas microwave beam hits a drone body broadside. The energy finds its way into something electrical, whether the central flight controller or a tiny wire controlling a flap on a wing, to short-circuit whatever’s available. (The company also says that this targeted hit of energy allows birds and other wildlife to continue to move safely.) Tyler Miller, a senior systems engineer on Epirus’s weaponeering team, told me that they never know exactly which part of the target drone is going to go down first, but they’ve reliably seen the microwave signal get in somewhere to overload a circuit. “Based on the geometry and the way the wires are laid out,” he said, one of those wires is going to be the best path in. “Sometimes if we rotate the drone 90 degrees, you have a different motor go down first,” he added. The team has even tried wrapping target drones in copper tape, which would theoretically provide shielding, only to find that the microwave still finds a way in through moving propeller shafts or antennas that need to remain exposed for the drone to fly.  EPIRUS Leonidas also has an edge when it comes to downing a mass of drones at once. Physically hitting a drone out of the sky or lighting it up with a laser can be effective in situations where electronic warfare fails, but anti-drone drones can only take out one at a time, and lasers need to precisely aim and shoot. Epirus’s microwaves can damage everything in a roughly 60-degree arc from the Leonidas emitter simultaneously and keep on zapping and zapping; directed energy systems like this one never run out of ammo. As for cost, each Army Leonidas unit currently runs in the “low eight figures,” Lowery told me. Defense contract pricing can be opaque, but Epirus delivered four units for its $66 million initial contract, giving a back-of-napkin price around $16.5 million each. For comparison, Stinger missiles from Raytheon, which soldiers shoot at enemy aircraft or drones from a shoulder-mounted launcher, cost hundreds of thousands of dollars a pop, meaning the Leonidas could start costing less (and keep shooting) after it downs the first wave of a swarm. Raytheon’s radar, reversed Epirus is part of a new wave of venture-capital-backed defense companies trying to change the way weapons are created—and the way the Pentagon buys them. The largest defense companies, firms like Raytheon, Boeing, Northrop Grumman, and Lockheed Martin, typically develop new weapons in response to research grants and cost-plus contracts, in which the US Department of Defense guarantees a certain profit margin to firms building products that match their laundry list of technical specifications. These programs have kept the military supplied with cutting-edge weapons for decades, but the results may be exquisite pieces of military machinery delivered years late and billions of dollars over budget. Rather than building to minutely detailed specs, the new crop of military contractors aim to produce products on a quick time frame to solve a problem and then fine-tune them as they pitch to the military. The model, pioneered by Palantir and SpaceX, has since propelled companies like Anduril, Shield AI, and dozens of other smaller startups into the business of war as venture capital piles tens of billions of dollars into defense. Like Anduril, Epirus has direct Palantir roots; it was cofounded by Joe Lonsdale, who also cofounded Palantir, and John Tenet, Lonsdale’s colleague at the time at his venture fund, 8VC. (Tenet, the son of former CIA director George Tenet, may have inspired the company’s name—the elder Tenet’s parents were born in the Epirus region in the northwest of Greece. But the company more often says it’s a reference to the pseudo-mythological Epirus Bow from the 2011 fantasy action movie Immortals, which never runs out of arrows.)  While Epirus is doing business in the new mode, its roots are in the old—specifically in Raytheon, a pioneer in the field of microwave technology. Cofounded by MIT professor Vannevar Bush in 1922, it manufactured vacuum tubes, like those found in old radios. But the company became synonymous with electronic defense during World War II, when Bush spun up a lab to develop early microwave radar technology invented by the British into a workable product, and Raytheon then began mass-producing microwave tubes—known as magnetrons—for the US war effort. By the end of the war in 1945, Raytheon was making 80% of the magnetrons powering Allied radar across the world. From padded foam chambers at the Epirus HQ, Leonidas devices can be safely tested on drones.EPIRUS Large tubes remained the best way to emit high-power microwaves for more than half a century, handily outperforming silicon-based solid-state amplifiers. They’re still around—the microwave on your kitchen counter runs on a vacuum tube magnetron. But tubes have downsides: They’re hot, they’re big, and they require upkeep. (In fact, the other microwave drone zapper currently in the Pentagon pipeline, the Tactical High-power Operational Responder, or THOR, still relies on a physical vacuum tube. It’s reported to be effective at downing drones in tests but takes up a whole shipping container and needs a dish antenna to zap its targets.) By the 2000s, new methods of building solid-state amplifiers out of materials like gallium nitride started to mature and were able to handle more power than silicon without melting or shorting out. The US Navy spent hundreds of millions of dollars on cutting-edge microwave contracts, one for a project at Raytheon called Next Generation Jammer—geared specifically toward designing a new way to make high-powered microwaves that work at extremely long distances. Lowery, the Epirus CEO, began his career working on nuclear reactors on Navy aircraft carriers before he became the chief engineer for Next Generation Jammer at Raytheon in 2010. There, he and his team worked on a system that relied on many of the same fundamentals that now power the Leonidas—using the same type of amplifier material and antenna setup to fry the electronics of a small target at much closer range rather than disrupting the radar of a target hundreds of miles away.  The similarity is not a coincidence: Two engineers from Next Generation Jammer helped launch Epirus in 2018. Lowery—who by then was working at the augmented-reality startup RealWear, which makes industrial smart glasses—joined Epirus in 2021 to run product development and was asked to take the top spot as CEO in 2023, as Leonidas became a fully formed machine. Much of the founding team has since departed for other projects, but Raytheon still runs through the company’s collective CV: ex-Raytheon radar engineer Matt Markel started in January as the new CTO, and Epirus’s chief engineer for defense, its VP of engineering, its VP of operations, and a number of employees all have Raytheon roots as well. Markel tells me that the Epirus way of working wouldn’t have flown at one of the big defense contractors: “They never would have tried spinning off the technology into a new application without a contract lined up.” The Epirus engineers saw the use case, raised money to start building Leonidas, and already had prototypes in the works before any military branch started awarding money to work on the project. Waiting for the starting gun On the wall of Lowery’s office are two mementos from testing days at an Army proving ground: a trophy wing from a larger drone, signed by the whole testing team, and a framed photo documenting the Leonidas’s carnage—a stack of dozens of inoperative drones piled up in a heap.  Despite what seems to have been an impressive test show, it’s still impossible from the outside to determine whether Epirus’s tech is ready to fully deliver if the swarms descend.  The Army would not comment specifically on the efficacy of any new weapons in testing or early deployment, including the Leonidas system. A spokesperson for the Army’s Rapid Capabilities and Critical Technologies Office, or RCCTO, which is the subsection responsible for contracting with Epirus to date, would only say in a statement that it is “committed to developing and fielding innovative Directed Energy solutions to address evolving threats.”  But various high-ranking officers appear to be giving Epirus a public vote of confidence. The three-star general who runs RCCTO and oversaw the Leonidas testing last summer told Breaking Defense that “the system actually worked very well,” even if there was work to be done on “how the weapon system fits into the larger kill chain.” And when former secretary of the Army Christine Wormuth, then the service’s highest-ranking civilian, gave a parting interview this past January, she mentioned Epirus in all but name, citing “one company” that is “using high-powered microwaves to basically be able to kill swarms of drones.” She called that kind of capability “critical for the Army.”  The Army isn’t the only branch interested in the microwave weapon. On Epirus’s factory floor when I visited, alongside the big beige Leonidases commissioned by the Army, engineers were building a smaller expeditionary version for the Marines, painted green, which it delivered in late April. Videos show that when it put some of its microwave emitters on a dock and tested them out for the Navy last summer, the microwaves left their targets dead in the water—successfully frying the circuits of outboard motors like the ones propelling Houthi drone boats.  Epirus is also currently working on an even smaller version of the Leonidas that can mount on top of the Army’s Stryker combat vehicles, and it’s testing out attaching a single microwave unit to a small airborne drone, which could work as a highly focused zapper to disable cars, data centers, or single enemy drones.  Epirus’s microwave technology is also being tested in devices smaller than the traditional Leonidas. EPIRUS While neither the Army nor the Navy has yet to announce a contract to start buying Epirus’s systems at scale, the company and its investors are actively preparing for the big orders to start rolling in. It raised $250 million in a funding round in early March to get ready to make as many Leonidases as possible in the coming years, adding to the more than $300 million it’s raised since opening its doors in 2018. “If you invent a force field that works,” Lowery boasts, “you really get a lot of attention.” The task for Epirus now, assuming that its main customers pull the trigger and start buying more Leonidases, is ramping up production while advancing the tech in its systems. Then there are the more prosaic problems of staffing, assembly, and testing at scale. For future generations, Lowery told me, the goal is refining the antenna design and integrating higher-powered microwave amplifiers to push the output into the tens of kilowatts, allowing for increased range and efficacy.  While this could be made harder by Trump’s global trade war, Lowery says he’s not worried about their supply chain; while China produces 98% of the world’s gallium, according to the US Geological Survey, and has choked off exports to the US, Epirus’s chip supplier uses recycled gallium from Japan.  The other outside challenge may be that Epirus isn’t the only company building a drone zapper. One of China’s state-owned defense companies has been working on its own anti-drone high-powered microwave weapon called the Hurricane, which it displayed at a major military show in late 2024.  It may be a sign that anti-electronics force fields will become common among the world’s militaries—and if so, the future of war is unlikely to go back to the status quo ante, and it might zag in a different direction yet again. But military planners believe it’s crucial for the US not to be left behind. So if it works as promised, Epirus could very well change the way that war will play out in the coming decade.  While Miller, the Army CTO, can’t speak directly to Epirus or any specific system, he will say that he believes anti-drone measures are going to have to become ubiquitous for US soldiers. “Counter-UAS [Unmanned Aircraft System] unfortunately is going to be like counter-IED,” he says. “It’s going to be every soldier’s job to think about UAS threats the same way it was to think about IEDs.”  And, he adds, it’s his job and his colleagues’ to make sure that tech so effective it works like “almost magic” is in the hands of the average rifleman. To that end, Lowery told me, Epirus is designing the Leonidas control system to work simply for troops, allowing them to identify a cluster of targets and start zapping with just a click of a button—but only extensive use in the field can prove that out. Epirus CEO Andy Lowery sees the Leonidas as providing a last line of defense against UAVs.EPIRUS In the not-too-distant future, Lowery says, this could mean setting up along the US-Mexico border. But the grandest vision for Epirus’s tech that he says he’s heard is for a city-scale Leonidas along the lines of a ballistic missile defense radar system called PAVE PAWS, which takes up an entire 105-foot-tall building and can detect distant nuclear missile launches. The US set up four in the 1980s, and Taiwan currently has one up on a mountain south of Taipei. Fill a similar-size building full of microwave emitters, and the beam could reach out “10 or 15 miles,” Lowery told me, with one sitting sentinel over Taipei in the north and another over Kaohsiung in the south of Taiwan. Riffing in Greek mythological mode, Lowery said of drones, “I call all these mischief makers. Whether they’re doing drugs or guns across the border or they’re flying over Langley [or] they’re spying on F-35s, they’re all like Icarus. You remember Icarus, with his wax wings? Flying all around—‘Nobody’s going to touch me, nobody’s going to ever hurt me.’” “We built one hell of a wax-wing melter.”  Sam Dean is a reporter focusing on business, tech, and defense. He is writing a book about the recent history of Silicon Valley returning to work with the Pentagon for Viking Press and covering the defense tech industry for a number of publications. Previously, he was a business reporter at the Los Angeles Times. This piece has been updated to clarify that Alex Miller is a civilian intelligence official. 
    0 Yorumlar 0 hisse senetleri