• Scientists in Canada have developed a biotint that simulates lung tissue. It's part of ongoing research in 3D bioprinting, which seems to be slowly evolving in the field of personalized medicine. A team from McMaster University in Ontario worked on this, aiming to replicate mechanical properties. Not sure how exciting this really is, but it's something, I guess.

    #Bioprinting #LungTissue #PersonalizedMedicine #McMasterUniversity #Research
    Scientists in Canada have developed a biotint that simulates lung tissue. It's part of ongoing research in 3D bioprinting, which seems to be slowly evolving in the field of personalized medicine. A team from McMaster University in Ontario worked on this, aiming to replicate mechanical properties. Not sure how exciting this really is, but it's something, I guess. #Bioprinting #LungTissue #PersonalizedMedicine #McMasterUniversity #Research
    Científicos en Canadá desarrollan una biotinta que simula el tejido pulmonar
    La bioimpresión 3D sigue estudiándose y evolucionando como una herramienta en el ámbito de la medicina personalizada. En esta línea, un equipo de investigadores de la Universidad McMaster, en Ontario, ha desarrollado una nueva biotinta que replica la
    Love
    Like
    Wow
    11
    1 Reacties 0 aandelen
  • At last, physicists at the University of Liège have cracked the code: water landscapes created with 3D printing! Because why enjoy a simple drink when you can have a miniature ocean on your table? Forget about the days of just swimming in water; now we can marvel at the aesthetic pleasure of tiny, printed spines dancing on the surface. Who knew physics could be so… artistic? Next up, they'll probably figure out how to print clouds into our living rooms. Get ready for some very confused houseplants.

    #3DPrinting #WaterLandscapes #PhysicsArt #UniversityOfLiege #InnovativeScience
    At last, physicists at the University of Liège have cracked the code: water landscapes created with 3D printing! Because why enjoy a simple drink when you can have a miniature ocean on your table? Forget about the days of just swimming in water; now we can marvel at the aesthetic pleasure of tiny, printed spines dancing on the surface. Who knew physics could be so… artistic? Next up, they'll probably figure out how to print clouds into our living rooms. Get ready for some very confused houseplants. #3DPrinting #WaterLandscapes #PhysicsArt #UniversityOfLiege #InnovativeScience
    Físicos de la Universidad de Lieja crean paisajes líquidos gracias a la impresión 3D
    ¿Y si pudiéramos convertir el agua en un paisaje? Físicos de la Universidad de Lieja, en Bélgica, en colaboración la Universidad Brown (EE.UU.), lo han logrado. A partir de espinas milimétricas impresas en 3D, consiguieron manipular la superficie del
    1 Reacties 0 aandelen
  • So, we’ve reached a point where our memories are on the brink of becoming as synthetic as our avocado toast. Enter Domestic Data Streamers, who’ve teamed up with Google Arts & Culture and the University of Toronto to create "Synthetic Memories." Forget about your blurry, unreliable brain; now we can reconstruct lost or never-existent memories with the help of AI! They call it “poetic mirrors of the past,” which sounds remarkably like the fancy way of saying, “We’ll just make stuff up for you.” Who needs genuine nostalgia when you can have a beautifully crafted illusion? Just remember—when your kids ask about your childhood, you can now show them a curated gallery of your “memories” that never were!

    #SyntheticMemories
    So, we’ve reached a point where our memories are on the brink of becoming as synthetic as our avocado toast. Enter Domestic Data Streamers, who’ve teamed up with Google Arts & Culture and the University of Toronto to create "Synthetic Memories." Forget about your blurry, unreliable brain; now we can reconstruct lost or never-existent memories with the help of AI! They call it “poetic mirrors of the past,” which sounds remarkably like the fancy way of saying, “We’ll just make stuff up for you.” Who needs genuine nostalgia when you can have a beautifully crafted illusion? Just remember—when your kids ask about your childhood, you can now show them a curated gallery of your “memories” that never were! #SyntheticMemories
    GRAFFICA.INFO
    Synthetic Memories: recuperar el pasado con IA cuando la memoria se desvanece
    El estudio barcelonés Domestic Data Streamers lanza un proyecto que usa inteligencia artificial generativa para reconstruir recuerdos perdidos o nunca registrados. “No son fotografías del pasado, son espejos poéticos del recuerdo”, explican. Con la c
    1 Reacties 0 aandelen
  • Exciting news from the University of Bristol! They are pioneering the use of 3D concrete printing for seismic safety! This innovative technology is not only revolutionizing the construction industry by enabling faster and more cost-effective building processes, but it also ensures our structures can withstand the forces of nature.

    Imagine a future where our homes and buildings are not just strong, but also built with cutting-edge technology! The possibilities are endless, and it’s inspiring to see how creativity meets safety! Let's embrace this amazing journey towards a more resilient world!

    #3DPrinting #SeismicSafety #BristolUniversity #ConstructionInnovation #FutureBuilding
    🌟 Exciting news from the University of Bristol! 🌟 They are pioneering the use of 3D concrete printing for seismic safety! 🏗️✨ This innovative technology is not only revolutionizing the construction industry by enabling faster and more cost-effective building processes, but it also ensures our structures can withstand the forces of nature. 🌍💪 Imagine a future where our homes and buildings are not just strong, but also built with cutting-edge technology! The possibilities are endless, and it’s inspiring to see how creativity meets safety! Let's embrace this amazing journey towards a more resilient world! 🚀💖 #3DPrinting #SeismicSafety #BristolUniversity #ConstructionInnovation #FutureBuilding
    La Universidad de Bristol prueba la impresión 3D de hormigón para la seguridad sísmica
    En los últimos años, la impresión 3D de hormigón se ha venido consolidando como una tecnología legítima dentro de la industria de la construcción. Esta técnica permite producir edificaciones de forma más rápida y rentable, por lo que los expertosR
    1 Reacties 0 aandelen
  • Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon

    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey.

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations.
    Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered.
    Frontiers: What inspired you to become a researcher?
    Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved.
    F: Can you tell us about the research you’re currently working on?
    BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation.
    Local boating the Amazon River. CREDIT: Beatriz Cosendey.
    F: Could you tell us about one of the legends surrounding anacondas?
    BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty.
    F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity?
    BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently.
    A giant anaconda is being measured. Credit: Pedro Calazans.
    F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play?
    BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?”
    For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste.
    One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey.
    Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey.
    We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals.
    F: Are there any common misconceptions about this area of research? How would you address them?
    BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data.
    However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework.
    To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society.
    The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey.
    F: What are some of the areas of research you’d like to see tackled in the years ahead?
    BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere.
    F: How has open science benefited the reach and impact of your research?
    BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups.
    The Q&A can also be read here.
    #qampampa #how #anacondas #chickens #locals
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here. #qampampa #how #anacondas #chickens #locals
    WWW.POPSCI.COM
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals (up to around 2–2.5 meters), while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is her [the anaconda’s] favorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh (to block smaller animals), and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here.
    Like
    Love
    Wow
    Sad
    Angry
    443
    2 Reacties 0 aandelen
  • Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons

    Starving bacteriause a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells. The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow.NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System, these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as /monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as !SubscribeAlready a subscriber?Register or Log In
    #hungry #bacteria #hunt #their #neighbors
    Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons
    Starving bacteriause a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells. The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow.NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System, these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as /monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as !SubscribeAlready a subscriber?Register or Log In #hungry #bacteria #hunt #their #neighbors
    WWW.DISCOVERMAGAZINE.COM
    Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons
    Starving bacteria (cyan) use a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells (magenta). The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow. (Image Credit: Glen D'Souza/ASU/Screen shot from video)NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System (T6SS), these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as $1.99/monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as $1.99!SubscribeAlready a subscriber?Register or Log In
    Like
    Love
    Wow
    Sad
    Angry
    375
    2 Reacties 0 aandelen
  • The Word is Out: Danish Ministry Drops Microsoft, Goes Open Source

    Key Takeaways

    Meta and Yandex have been found guilty of secretly listening to localhost ports and using them to transfer sensitive data from Android devices.
    The corporations use Meta Pixel and Yandex Metrica scripts to transfer cookies from browsers to local apps. Using incognito mode or a VPN can’t fully protect users against it.
    A Meta spokesperson has called this a ‘miscommunication,’ which seems to be an attempt to underplay the situation.

    Denmark’s Ministry of Digitalization has recently announced that it will leave the Microsoft ecosystem in favor of Linux and other open-source software.
    Minister Caroline Stage Olsen revealed this in an interview with Politiken, the country’s leading newspaper. According to Olsen, the Ministry plans to switch half of its employees to Linux and LibreOffice by summer, and the rest by fall.
    The announcement comes after Denmark’s largest cities – Copenhagen and Aarhus – made similar moves earlier this month.
    Why the Danish Ministry of Digitalization Switched to Open-Source Software
    The three main reasons Denmark is moving away from Microsoft are costs, politics, and security.
    In the case of Aarhus, the city was able to slash its annual costs from 800K kroner to just 225K by replacing Microsoft with a German service provider. 
    The same is a pain point for Copenhagen, which saw its costs on Microsoft balloon from 313M kroner in 2018 to 538M kroner in 2023.
    It’s also part of a broader move to increase its digital sovereignty. In her LinkedIn post, Olsen further explained that the strategy is not about isolation or digital nationalism, adding that they should not turn their backs completely on global tech companies like Microsoft. 

    Instead, it’s about avoiding being too dependent on these companies, which could prevent them from acting freely.
    Then there’s politics. Since his reelection earlier this year, US President Donald Trump has repeatedly threatened to take over Greenland, an autonomous territory of Denmark. 
    In May, the Danish Foreign Minister Lars Løkke Rasmussen summoned the US ambassador regarding news that US spy agencies have been told to focus on the territory.
    If the relationship between the two countries continues to erode, Trump can order Microsoft and other US tech companies to cut off Denmark from their services. After all, Microsoft and Facebook’s parent company Meta, have close ties to the US president after contributing M each for his inauguration in January.
    Denmark Isn’t Alone: Other EU Countries Are Making Similar Moves
    Denmark is only one of the growing number of European Unioncountries taking measures to become more digitally independent.
    Germany’s Federal Digital Minister Karsten Wildberger emphasized the need to be more independent of global tech companies during the re:publica internet conference in May. He added that IT companies in the EU have the opportunity to create tech that is based on the region’s values.

    Meanwhile, Bert Hubert, a technical advisor to the Dutch Electoral Council, wrote in February that ‘it is no longer safe to move our governments and societies to US clouds.’ He said that America is no longer a ‘reliable partner,’ making it risky to have the data of European governments and businesses at the mercy of US-based cloud providers.
    Earlier this month, the chief prosecutor of the International Criminal Court, Karim Khan, experienced a disconnection from his Microsoft-based email account, sparking uproar across the region. 
    Speculation quickly arose that the incident was linked to sanctions previously imposed on the ICC by the Trump administration, an assertion Microsoft has denied.
    Earlier this month, the chief prosecutor of the International Criminal Court, Karim Khan, disconnection from his Microsoft-based email account caused an uproar in the region. Some speculated that this was connected to sanctions imposed by Trump against the ICC, which Microsoft denied.
    Weaning the EU Away from US Tech is Possible, But Challenges Lie Ahead
    Change like this doesn’t happen overnight. Just finding, let alone developing, reliable alternatives to tools that have been part of daily workflows for decades, is a massive undertaking.
    It will also take time for users to adapt to these new tools, especially when transitioning to an entirely new ecosystem. In Aarhus, for example, municipal staff initially viewed the shift to open source as a step down from the familiarity and functionality of Microsoft products.
    Overall, these are only temporary hurdles. Momentum is building, with growing calls for digital independence from leaders like Ministers Olsen and Wildberger.
     Initiatives such as the Digital Europe Programme, which seeks to reduce reliance on foreign systems and solutions, further accelerate this push. As a result, the EU’s transition could arrive sooner rather than later

    As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy.
    With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility.
    Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines.
    Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech. 
    He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom.
    That fascination with tech didn’t just stick. It evolved into a full-blown calling.
    After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career.
    He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy.
    His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers.
    At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap.
    Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual.
    As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting.
    From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it.

    View all articles by Cedric Solidon

    Our editorial process

    The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors.
    #word #out #danish #ministry #drops
    The Word is Out: Danish Ministry Drops Microsoft, Goes Open Source
    Key Takeaways Meta and Yandex have been found guilty of secretly listening to localhost ports and using them to transfer sensitive data from Android devices. The corporations use Meta Pixel and Yandex Metrica scripts to transfer cookies from browsers to local apps. Using incognito mode or a VPN can’t fully protect users against it. A Meta spokesperson has called this a ‘miscommunication,’ which seems to be an attempt to underplay the situation. Denmark’s Ministry of Digitalization has recently announced that it will leave the Microsoft ecosystem in favor of Linux and other open-source software. Minister Caroline Stage Olsen revealed this in an interview with Politiken, the country’s leading newspaper. According to Olsen, the Ministry plans to switch half of its employees to Linux and LibreOffice by summer, and the rest by fall. The announcement comes after Denmark’s largest cities – Copenhagen and Aarhus – made similar moves earlier this month. Why the Danish Ministry of Digitalization Switched to Open-Source Software The three main reasons Denmark is moving away from Microsoft are costs, politics, and security. In the case of Aarhus, the city was able to slash its annual costs from 800K kroner to just 225K by replacing Microsoft with a German service provider.  The same is a pain point for Copenhagen, which saw its costs on Microsoft balloon from 313M kroner in 2018 to 538M kroner in 2023. It’s also part of a broader move to increase its digital sovereignty. In her LinkedIn post, Olsen further explained that the strategy is not about isolation or digital nationalism, adding that they should not turn their backs completely on global tech companies like Microsoft.  Instead, it’s about avoiding being too dependent on these companies, which could prevent them from acting freely. Then there’s politics. Since his reelection earlier this year, US President Donald Trump has repeatedly threatened to take over Greenland, an autonomous territory of Denmark.  In May, the Danish Foreign Minister Lars Løkke Rasmussen summoned the US ambassador regarding news that US spy agencies have been told to focus on the territory. If the relationship between the two countries continues to erode, Trump can order Microsoft and other US tech companies to cut off Denmark from their services. After all, Microsoft and Facebook’s parent company Meta, have close ties to the US president after contributing M each for his inauguration in January. Denmark Isn’t Alone: Other EU Countries Are Making Similar Moves Denmark is only one of the growing number of European Unioncountries taking measures to become more digitally independent. Germany’s Federal Digital Minister Karsten Wildberger emphasized the need to be more independent of global tech companies during the re:publica internet conference in May. He added that IT companies in the EU have the opportunity to create tech that is based on the region’s values. Meanwhile, Bert Hubert, a technical advisor to the Dutch Electoral Council, wrote in February that ‘it is no longer safe to move our governments and societies to US clouds.’ He said that America is no longer a ‘reliable partner,’ making it risky to have the data of European governments and businesses at the mercy of US-based cloud providers. Earlier this month, the chief prosecutor of the International Criminal Court, Karim Khan, experienced a disconnection from his Microsoft-based email account, sparking uproar across the region.  Speculation quickly arose that the incident was linked to sanctions previously imposed on the ICC by the Trump administration, an assertion Microsoft has denied. Earlier this month, the chief prosecutor of the International Criminal Court, Karim Khan, disconnection from his Microsoft-based email account caused an uproar in the region. Some speculated that this was connected to sanctions imposed by Trump against the ICC, which Microsoft denied. Weaning the EU Away from US Tech is Possible, But Challenges Lie Ahead Change like this doesn’t happen overnight. Just finding, let alone developing, reliable alternatives to tools that have been part of daily workflows for decades, is a massive undertaking. It will also take time for users to adapt to these new tools, especially when transitioning to an entirely new ecosystem. In Aarhus, for example, municipal staff initially viewed the shift to open source as a step down from the familiarity and functionality of Microsoft products. Overall, these are only temporary hurdles. Momentum is building, with growing calls for digital independence from leaders like Ministers Olsen and Wildberger.  Initiatives such as the Digital Europe Programme, which seeks to reduce reliance on foreign systems and solutions, further accelerate this push. As a result, the EU’s transition could arrive sooner rather than later As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy. With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility. Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines. Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech.  He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom. That fascination with tech didn’t just stick. It evolved into a full-blown calling. After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career. He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy. His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers. At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap. Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual. As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting. From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it. View all articles by Cedric Solidon Our editorial process The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors. #word #out #danish #ministry #drops
    TECHREPORT.COM
    The Word is Out: Danish Ministry Drops Microsoft, Goes Open Source
    Key Takeaways Meta and Yandex have been found guilty of secretly listening to localhost ports and using them to transfer sensitive data from Android devices. The corporations use Meta Pixel and Yandex Metrica scripts to transfer cookies from browsers to local apps. Using incognito mode or a VPN can’t fully protect users against it. A Meta spokesperson has called this a ‘miscommunication,’ which seems to be an attempt to underplay the situation. Denmark’s Ministry of Digitalization has recently announced that it will leave the Microsoft ecosystem in favor of Linux and other open-source software. Minister Caroline Stage Olsen revealed this in an interview with Politiken, the country’s leading newspaper. According to Olsen, the Ministry plans to switch half of its employees to Linux and LibreOffice by summer, and the rest by fall. The announcement comes after Denmark’s largest cities – Copenhagen and Aarhus – made similar moves earlier this month. Why the Danish Ministry of Digitalization Switched to Open-Source Software The three main reasons Denmark is moving away from Microsoft are costs, politics, and security. In the case of Aarhus, the city was able to slash its annual costs from 800K kroner to just 225K by replacing Microsoft with a German service provider.  The same is a pain point for Copenhagen, which saw its costs on Microsoft balloon from 313M kroner in 2018 to 538M kroner in 2023. It’s also part of a broader move to increase its digital sovereignty. In her LinkedIn post, Olsen further explained that the strategy is not about isolation or digital nationalism, adding that they should not turn their backs completely on global tech companies like Microsoft.  Instead, it’s about avoiding being too dependent on these companies, which could prevent them from acting freely. Then there’s politics. Since his reelection earlier this year, US President Donald Trump has repeatedly threatened to take over Greenland, an autonomous territory of Denmark.  In May, the Danish Foreign Minister Lars Løkke Rasmussen summoned the US ambassador regarding news that US spy agencies have been told to focus on the territory. If the relationship between the two countries continues to erode, Trump can order Microsoft and other US tech companies to cut off Denmark from their services. After all, Microsoft and Facebook’s parent company Meta, have close ties to the US president after contributing $1M each for his inauguration in January. Denmark Isn’t Alone: Other EU Countries Are Making Similar Moves Denmark is only one of the growing number of European Union (EU) countries taking measures to become more digitally independent. Germany’s Federal Digital Minister Karsten Wildberger emphasized the need to be more independent of global tech companies during the re:publica internet conference in May. He added that IT companies in the EU have the opportunity to create tech that is based on the region’s values. Meanwhile, Bert Hubert, a technical advisor to the Dutch Electoral Council, wrote in February that ‘it is no longer safe to move our governments and societies to US clouds.’ He said that America is no longer a ‘reliable partner,’ making it risky to have the data of European governments and businesses at the mercy of US-based cloud providers. Earlier this month, the chief prosecutor of the International Criminal Court (ICC), Karim Khan, experienced a disconnection from his Microsoft-based email account, sparking uproar across the region.  Speculation quickly arose that the incident was linked to sanctions previously imposed on the ICC by the Trump administration, an assertion Microsoft has denied. Earlier this month, the chief prosecutor of the International Criminal Court (ICC), Karim Khan, disconnection from his Microsoft-based email account caused an uproar in the region. Some speculated that this was connected to sanctions imposed by Trump against the ICC, which Microsoft denied. Weaning the EU Away from US Tech is Possible, But Challenges Lie Ahead Change like this doesn’t happen overnight. Just finding, let alone developing, reliable alternatives to tools that have been part of daily workflows for decades, is a massive undertaking. It will also take time for users to adapt to these new tools, especially when transitioning to an entirely new ecosystem. In Aarhus, for example, municipal staff initially viewed the shift to open source as a step down from the familiarity and functionality of Microsoft products. Overall, these are only temporary hurdles. Momentum is building, with growing calls for digital independence from leaders like Ministers Olsen and Wildberger.  Initiatives such as the Digital Europe Programme, which seeks to reduce reliance on foreign systems and solutions, further accelerate this push. As a result, the EU’s transition could arrive sooner rather than later As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy. With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility. Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines. Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech.  He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom. That fascination with tech didn’t just stick. It evolved into a full-blown calling. After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career. He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy. His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers. At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap. Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual. As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting. From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it. View all articles by Cedric Solidon Our editorial process The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors.
    Like
    Love
    Wow
    Sad
    Angry
    526
    2 Reacties 0 aandelen
  • Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos

    Casa Sofia | © Fernando Guerra / FG+SG
    Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression.

    Casa Sofia Technical Information

    Architects1-4: Mário Martins Atelier
    Location: Lagos, Portugal
    Project Completion Years: 2023
    Photographs: © Fernando Guerra / FG+SG

    It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries.
    – Mário Martins Atelier

    Casa Sofia Photographs

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG
    Spatial Organization and Circulation
    The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time.
    At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout.
    The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial.
    On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors.
    Materiality and Craftsmanship
    Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture.
    The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures.
    Broader Urban and Cultural Implications
    Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity.
    In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment.
    Casa Sofia Plans

    Sketch | © Mário Martins Atelier

    Ground Level | © Mário Martins Atelier

    Level 1 | © Mário Martins Atelier

    Level 2 | © Mário Martins Atelier

    Roof Plan | © Mário Martins Atelier

    Section | © Mário Martins Atelier
    Casa Sofia Image Gallery

    About Mário Martins Atelier
    Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon. Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies.
    Credits and Additional Notes

    Lead Architect: Mário Martins, arq.
    Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça
    Engineering: Nuno Grave Engenharia
    Building: Marques Antunes Engenharia Lda
    #casa #sofia #mário #martins #atelier
    Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos
    Casa Sofia | © Fernando Guerra / FG+SG Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression. Casa Sofia Technical Information Architects1-4: Mário Martins Atelier Location: Lagos, Portugal Project Completion Years: 2023 Photographs: © Fernando Guerra / FG+SG It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries. – Mário Martins Atelier Casa Sofia Photographs © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG Spatial Organization and Circulation The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time. At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout. The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial. On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors. Materiality and Craftsmanship Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture. The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures. Broader Urban and Cultural Implications Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity. In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment. Casa Sofia Plans Sketch | © Mário Martins Atelier Ground Level | © Mário Martins Atelier Level 1 | © Mário Martins Atelier Level 2 | © Mário Martins Atelier Roof Plan | © Mário Martins Atelier Section | © Mário Martins Atelier Casa Sofia Image Gallery About Mário Martins Atelier Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon. Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies. Credits and Additional Notes Lead Architect: Mário Martins, arq. Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça Engineering: Nuno Grave Engenharia Building: Marques Antunes Engenharia Lda #casa #sofia #mário #martins #atelier
    ARCHEYES.COM
    Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos
    Casa Sofia | © Fernando Guerra / FG+SG Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression. Casa Sofia Technical Information Architects1-4: Mário Martins Atelier Location: Lagos, Portugal Project Completion Years: 2023 Photographs: © Fernando Guerra / FG+SG It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries. – Mário Martins Atelier Casa Sofia Photographs © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG Spatial Organization and Circulation The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time. At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout. The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial. On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors. Materiality and Craftsmanship Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture. The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures. Broader Urban and Cultural Implications Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity. In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment. Casa Sofia Plans Sketch | © Mário Martins Atelier Ground Level | © Mário Martins Atelier Level 1 | © Mário Martins Atelier Level 2 | © Mário Martins Atelier Roof Plan | © Mário Martins Atelier Section | © Mário Martins Atelier Casa Sofia Image Gallery About Mário Martins Atelier Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon (1988). Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies. Credits and Additional Notes Lead Architect: Mário Martins, arq. Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça Engineering: Nuno Grave Engenharia Building: Marques Antunes Engenharia Lda
    Like
    Love
    Wow
    Sad
    Angry
    395
    2 Reacties 0 aandelen
  • Scientists Detect Unusual Airborne Toxin in the United States for the First Time

    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock
    University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffinsin the Western Hemisphere.
    Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins.
    This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins, a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au.
    “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.”
    MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now.
    From Wastewater to Farmlands
    MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument.
    “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.”
    MCCPs little cousins, Short Chain Chlorinated Paraffins, are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment.
    “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.”
    Measurement of aerosols led to a new and surprising discovery
    Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs.
    Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer.
    Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts.
    “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.”
    Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au.
    DOI: 10.1021/acsenvironau.5c00038
    Never miss a breakthrough: Join the SciTechDaily newsletter.
    #scientists #detect #unusual #airborne #toxin
    Scientists Detect Unusual Airborne Toxin in the United States for the First Time
    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffinsin the Western Hemisphere. Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins. This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins, a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au. “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.” MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now. From Wastewater to Farmlands MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument. “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.” MCCPs little cousins, Short Chain Chlorinated Paraffins, are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment. “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.” Measurement of aerosols led to a new and surprising discovery Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs. Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer. Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts. “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.” Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au. DOI: 10.1021/acsenvironau.5c00038 Never miss a breakthrough: Join the SciTechDaily newsletter. #scientists #detect #unusual #airborne #toxin
    SCITECHDAILY.COM
    Scientists Detect Unusual Airborne Toxin in the United States for the First Time
    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffins (MCCPs) in the Western Hemisphere. Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins. This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins (MCCPs), a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au. “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.” MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now. From Wastewater to Farmlands MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument. “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.” MCCPs little cousins, Short Chain Chlorinated Paraffins (SCCPs), are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment. “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.” Measurement of aerosols led to a new and surprising discovery Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs. Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer. Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts. “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.” Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au. DOI: 10.1021/acsenvironau.5c00038 Never miss a breakthrough: Join the SciTechDaily newsletter.
    Like
    Love
    Wow
    Sad
    Angry
    411
    2 Reacties 0 aandelen
  • Air-Conditioning Can Help the Power Grid instead of Overloading It

    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article.
    #airconditioning #can #help #power #grid
    Air-Conditioning Can Help the Power Grid instead of Overloading It
    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article. #airconditioning #can #help #power #grid
    WWW.SCIENTIFICAMERICAN.COM
    Air-Conditioning Can Help the Power Grid instead of Overloading It
    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article.
    Like
    Love
    Wow
    Sad
    Angry
    602
    0 Reacties 0 aandelen
Zoekresultaten