• Inside the Palazzo Durini Caproni di Taleido, Where the Past and Present Clash Harmoniously

    The 17th-century frescoes and antique mirrors should immediately tip visitors off: This showroom has something it needs to say. Palazzo Durini Caproni di Taliedo is a historic building in Milan, designed and built in the mid-1600s by Baroque architect Francesco Maria Richini. Among many other monumental works and churches, he also designed Milan’s Palazzo di Brera, which currently includes the Pinacoteca di Brera museum. The Palazzo Durini Caproni di Taliedo was commissioned by the heir to the Durinis, a wealthy merchant family.Today the palazzo is furniture showroom as palimpsest. Since 2021, Edra has exhibited collaborations with supremely contemporary designers, including the Campana brothers, Jacopo Foggini, and Francesco Binfaré, amid the restored Baroque grandeur.Courtesy Edra.Palazzo Durini in the 1920s, when the famed Italian aircraft designer and aeronautical engineer Giovanni Battista Caproni used it as an office.Walking through the rooms, one might imagine the visitors who could have lounged on an Edra “On the Rocks” sofa at one time or another in the history of this place: Giovanni Battista Caproni, the Italian count and aeronautical engineer who lived and worked in the building for more than 40 years? Soccer sensation Ronaldo, who caused a near riot when he visited the palazzo during its Inter Football Club era, when the sports association’s offices were located here? Or could it be iconic designer Gio Ponti, who is said to have drawn that gilded Art Deco bathroom with green terrazzo floors in the back?One palazzo, so many lives. Top Image: Palazzo Durini now, in its Edra showroom era. The frescoes may be 17th-century, but the furniture is the 2021 A’mare collection by Jacopo Foggini.This story originally appeared in the Summer 2025 issue of Elle Decor. SUBSCRIBEStellene VolandesEditor In ChiefEditor-in-Chief Stellene Volandes is a jewelry expert, and the author of Jeweler: Masters and Mavericks of Modern Design.
    #inside #palazzo #durini #caproni #taleido
    Inside the Palazzo Durini Caproni di Taleido, Where the Past and Present Clash Harmoniously
    The 17th-century frescoes and antique mirrors should immediately tip visitors off: This showroom has something it needs to say. Palazzo Durini Caproni di Taliedo is a historic building in Milan, designed and built in the mid-1600s by Baroque architect Francesco Maria Richini. Among many other monumental works and churches, he also designed Milan’s Palazzo di Brera, which currently includes the Pinacoteca di Brera museum. The Palazzo Durini Caproni di Taliedo was commissioned by the heir to the Durinis, a wealthy merchant family.Today the palazzo is furniture showroom as palimpsest. Since 2021, Edra has exhibited collaborations with supremely contemporary designers, including the Campana brothers, Jacopo Foggini, and Francesco Binfaré, amid the restored Baroque grandeur.Courtesy Edra.Palazzo Durini in the 1920s, when the famed Italian aircraft designer and aeronautical engineer Giovanni Battista Caproni used it as an office.Walking through the rooms, one might imagine the visitors who could have lounged on an Edra “On the Rocks” sofa at one time or another in the history of this place: Giovanni Battista Caproni, the Italian count and aeronautical engineer who lived and worked in the building for more than 40 years? Soccer sensation Ronaldo, who caused a near riot when he visited the palazzo during its Inter Football Club era, when the sports association’s offices were located here? Or could it be iconic designer Gio Ponti, who is said to have drawn that gilded Art Deco bathroom with green terrazzo floors in the back?One palazzo, so many lives. ◾Top Image: Palazzo Durini now, in its Edra showroom era. The frescoes may be 17th-century, but the furniture is the 2021 A’mare collection by Jacopo Foggini.This story originally appeared in the Summer 2025 issue of Elle Decor. SUBSCRIBEStellene VolandesEditor In ChiefEditor-in-Chief Stellene Volandes is a jewelry expert, and the author of Jeweler: Masters and Mavericks of Modern Design. #inside #palazzo #durini #caproni #taleido
    WWW.ELLEDECOR.COM
    Inside the Palazzo Durini Caproni di Taleido, Where the Past and Present Clash Harmoniously
    The 17th-century frescoes and antique mirrors should immediately tip visitors off: This showroom has something it needs to say. Palazzo Durini Caproni di Taliedo is a historic building in Milan, designed and built in the mid-1600s by Baroque architect Francesco Maria Richini. Among many other monumental works and churches, he also designed Milan’s Palazzo di Brera, which currently includes the Pinacoteca di Brera museum. The Palazzo Durini Caproni di Taliedo was commissioned by the heir to the Durinis, a wealthy merchant family.Today the palazzo is furniture showroom as palimpsest. Since 2021, Edra has exhibited collaborations with supremely contemporary designers, including the Campana brothers, Jacopo Foggini, and Francesco Binfaré, amid the restored Baroque grandeur.Courtesy Edra.Palazzo Durini in the 1920s, when the famed Italian aircraft designer and aeronautical engineer Giovanni Battista Caproni used it as an office.Walking through the rooms, one might imagine the visitors who could have lounged on an Edra “On the Rocks” sofa at one time or another in the history of this place: Giovanni Battista Caproni, the Italian count and aeronautical engineer who lived and worked in the building for more than 40 years? Soccer sensation Ronaldo, who caused a near riot when he visited the palazzo during its Inter Football Club era, when the sports association’s offices were located here? Or could it be iconic designer Gio Ponti, who is said to have drawn that gilded Art Deco bathroom with green terrazzo floors in the back?One palazzo, so many lives. ◾Top Image: Palazzo Durini now, in its Edra showroom era. The frescoes may be 17th-century, but the furniture is the 2021 A’mare collection by Jacopo Foggini.This story originally appeared in the Summer 2025 issue of Elle Decor. SUBSCRIBEStellene VolandesEditor In ChiefEditor-in-Chief Stellene Volandes is a jewelry expert, and the author of Jeweler: Masters and Mavericks of Modern Design (Rizzoli).
    Like
    Love
    Wow
    Sad
    Angry
    449
    0 Commenti 0 condivisioni
  • F5: Leta Sobierajski Talks Giant Pandas, Sculptural Clothing + More

    When Leta Sobierajski enrolled in college, she already knew what she was meant to do, and she didn’t settle for anything less. “When I went to school for graphic design, I really didn’t have a backup plan – it was this, or nothing,” she says. “My work is a constantly evolving practice, and from the beginning, I have always convinced myself that if I put in the time and experimentation, I would grow and evolve.”
    After graduation, Sobierajski took on a range of projects, which included animation, print, and branding elements. She collaborated with corporate clients, but realized that she wouldn’t feel comfortable following anyone else’s rules in a 9-to-5 environment.
    Leta Sobierajskiand Wade Jeffree\\\ Photo: Matt Dutile
    Sobierajski eventually decided to team up with fellow artist and kindred spirit Wade Jeffree. In 2016 they launched their Brooklyn-based studio, Wade and Leta. The duo, who share a taste for quirky aesthetics, produces sculpture, installations, or anything else they can dream up. Never static in thinking or method, they are constantly searching for another medium to try that will complement their shared vision of the moment.
    The pair is currently interested in permanency, and they want to utilize more metal, a strong material that will stand the test of time. Small architectural pieces are also on tap, and on a grander scale, they’d like to focus on a park or communal area that everyone can enjoy.
    With so many ideas swirling around, Sobierajski will record a concept in at least three different ways so that she’s sure to unearth it at a later date. “In some ways, I like to think I’m impeccably organized, as I have countless spreadsheets tracking our work, our lives, and our well-being,” she explains. “The reality is that I am great at over-complicating situations with my intensified list-making and note-taking. The only thing to do is to trust the process.”
    Today, Leta Sobierajski joins us for Friday Five!
    Photo: Melitta Baumeister and Michał Plata
    1. Melitta Baumeister and Michał Plata
    The work of Melitta Baumeister and Michał Plata has been a constant inspiration to me for their innovative, artful, and architectural silhouettes. By a practice of draping and arduous pattern-making, the garments that they develop season after season feel like they could be designed for existence in another universe. I’m a person who likes to dress up for anything when I’m not in the studio, and every time I opt to wear one of their looks, I feel like I can take on the world. The best part about their pieces is that they’re extremely functional, so whether I need to hop on a bicycle or show up at an opening, I’m still able to make a statement – these garments even have the ability to strike up conversations on their own.
    Photo: Wade and Leta
    2. Pandas!
    I was recently in Chengdu to launch a new project and we took half the day to visit the Chengdu Research Base of Giant Pandas and I am a new panda convert. Yes, they’re docile and cute, but their lifestyles are utterly chill and deeply enviable for us adults with responsibilities. Giant pandas primarily eat bamboo and can consume 20-40 kilograms per day. When they’re not doing that, they’re sleeping. When we visited, many could be seen reclining on their backs, feasting on some of the finest bamboo they could select within arm’s reach. While not necessarily playful in appearance, they do seem quite cheeky in their agendas and will do as little as they can to make the most of their meals. It felt like I was watching a mirrored image of myself on a Sunday afternoon while trying to make the most of my last hours of the weekend.
    Photo: Courtesy of Aoiro
    3. Aoiro
    I’m not really a candle personbut I love the luxurious subtlety of a fragrant space. It’s an intangible feeling that really can only be experienced in the present. Some of the best people to create these fragrances, in my opinion, are Shizuko and Manuel, the masterminds behind Aoiro, a Japanese and Austrian duo who have developed a keen sense for embodying the fragrances of some of the most intriguing and captivating olfactory atmospheres – earthy forest floors with crackling pine needles, blue cypress tickling the moon in an indigo sky, and rainfall on a spirited Japanese island. Despite living in an urban city, Aoiro’s olfactory design is capable of transporting me to the deepest forests of misty Yakushima island.
    Photo: Wade and Leta
    4. Takuro Kuwata
    A few months ago, I saw the work of Japanese ceramicist Takuro Kuwata at an exhibition at Salon94 and have been having trouble getting it out of my head. Kuwata’s work exemplifies someone who has worked with a medium so much to completely use the medium as a medium – if that makes sense. His ability to manipulate clay and glaze and use it to create gravity-defying effects within the kiln are exceptionally mysterious to me and feel like they could only be accomplished with years and years of experimentation with the material. I’m equally impressed seeing how he’s grown his work with scale, juxtaposing it with familiar iconography like the fuzzy peach, but sculpting it from materials like bronze.
    Photo: Wade and Leta
    5. The Site of Reversible Destiny, a park built by artists Arakawa and Gins, in Yoro Japan
    The park is a testament to their career as writers, architects, and their idea of reversible destiny, which in its most extreme form, eliminates death. For all that are willing to listen, Arakawa and Gins’ Reversible Destiny mentality aims to make our lives a little more youthful by encouraging us to reevaluate our relationship with architecture and our surroundings. The intention of “reversible destiny” is not to prolong death, postpone it, grow older alongside it, but to entirely not acknowledge and surpass it. Wadeand I have spent the last ten years traveling to as many of their remaining sites as possible to further understand this notion of creating spaces to extend our lives and question how conventional living spaces can become detrimental to our longevity.
     
    Works by Wade and Leta:
    Photo: Wade and Leta and Matt Alexander
    Now You See Me is a large-scale installation in the heart of Shoreditch, London, that explores the relationship between positive and negative space through bold color, geometry, and light. Simple, familiar shapes are embedded within monolithic forms, creating a layered visual experience that shifts throughout the day. As sunlight passes through the structures, shadows and silhouettes stretch and connect, forming dynamic compositions on the surrounding concrete.
    Photo: Wade and Leta and John Wylie
    Paint Your Own Path is series of five towering sculptures, ranging from 10 to 15 feet tall, invites viewers to explore balance, tension, and perspective through bold color and form. Inspired by the delicate, often precarious act of stacking objects, the sculptures appear as if they might topple – yet each one holds steady, challenging perceptions of stability. Created in partnership with the Corolla Cross, the installation transforms its environment into a pop-colored landscape.
    Photo: Millenia Walk and Outer Edit, Eurthe Studio
    Monument to Movement is a 14-meter-tall kinetic sculpture that celebrates the spirit of the holiday season through rhythm, motion, and color. Rising skyward in layered compositions, the work symbolizes collective joy, renewal, and the shared energy of celebrations that span cultures and traditions. Powered by motors and constructed from metal beams and cardboard forms, the sculpture continuously shifts, inviting viewers to reflect on the passage of time and the cycles that connect us all.
    Photo: Wade and Leta and Erika Hara, Piotr Maslanka, and Jeremy Renault
    Falling Into Place is a vibrant rooftop installation at Ginza Six that explores themes of alignment, adaptability, and perspective. Six colorful structures – each with a void like a missing puzzle piece – serve as spaces for reflection, inviting visitors to consider their place within a greater whole. Rather than focusing on absence, the design transforms emptiness into opportunity, encouraging people to embrace spontaneity and the unfolding nature of life. Playful yet contemplative, the work emphasizes that only through connection and participation can the full picture come into view.
    Photo: Wade and Leta and Erika Hara, Piotr Maslanka, and Jeremy Renault
    Photo: Wade and Leta
    Stop, Listen, Look is a 7-meter-tall interactive artwork atop IFS Chengdu that captures the vibrant rhythm of the city through movement, sound, and form. Blending motorized and wind-powered elements with seesaws and sound modulation, it invites people of all ages to engage, play, and reflect. Inspired by Chengdu’s balance of tradition and modernity, the piece incorporates circular motifs from local symbolism alongside bold, geometric forms to create a dialogue between past and present. With light, motion, and community at its core, the work invites visitors to connect with the city – and each other – through shared interaction.

    The Cloud is a permanent sculptural kiosk in Burlington, Vermont’s historic City Hall Park, created in collaboration with Brooklyn-based Studio RENZ+OEI. Designed to reinterpret the ephemeral nature of clouds through architecture, it blends art, air, and imagination into a light, fluid structure that defies traditional rigidity. Originally born from a creative exchange between longtime friends and collaborators, the design challenges expectations of permanence by embodying movement and openness. Now home to a local food vendor, The Cloud brings a playful, uplifting presence to the park, inviting reflection and interaction rain or shine..
    #leta #sobierajski #talks #giant #pandas
    F5: Leta Sobierajski Talks Giant Pandas, Sculptural Clothing + More
    When Leta Sobierajski enrolled in college, she already knew what she was meant to do, and she didn’t settle for anything less. “When I went to school for graphic design, I really didn’t have a backup plan – it was this, or nothing,” she says. “My work is a constantly evolving practice, and from the beginning, I have always convinced myself that if I put in the time and experimentation, I would grow and evolve.” After graduation, Sobierajski took on a range of projects, which included animation, print, and branding elements. She collaborated with corporate clients, but realized that she wouldn’t feel comfortable following anyone else’s rules in a 9-to-5 environment. Leta Sobierajskiand Wade Jeffree\\\ Photo: Matt Dutile Sobierajski eventually decided to team up with fellow artist and kindred spirit Wade Jeffree. In 2016 they launched their Brooklyn-based studio, Wade and Leta. The duo, who share a taste for quirky aesthetics, produces sculpture, installations, or anything else they can dream up. Never static in thinking or method, they are constantly searching for another medium to try that will complement their shared vision of the moment. The pair is currently interested in permanency, and they want to utilize more metal, a strong material that will stand the test of time. Small architectural pieces are also on tap, and on a grander scale, they’d like to focus on a park or communal area that everyone can enjoy. With so many ideas swirling around, Sobierajski will record a concept in at least three different ways so that she’s sure to unearth it at a later date. “In some ways, I like to think I’m impeccably organized, as I have countless spreadsheets tracking our work, our lives, and our well-being,” she explains. “The reality is that I am great at over-complicating situations with my intensified list-making and note-taking. The only thing to do is to trust the process.” Today, Leta Sobierajski joins us for Friday Five! Photo: Melitta Baumeister and Michał Plata 1. Melitta Baumeister and Michał Plata The work of Melitta Baumeister and Michał Plata has been a constant inspiration to me for their innovative, artful, and architectural silhouettes. By a practice of draping and arduous pattern-making, the garments that they develop season after season feel like they could be designed for existence in another universe. I’m a person who likes to dress up for anything when I’m not in the studio, and every time I opt to wear one of their looks, I feel like I can take on the world. The best part about their pieces is that they’re extremely functional, so whether I need to hop on a bicycle or show up at an opening, I’m still able to make a statement – these garments even have the ability to strike up conversations on their own. Photo: Wade and Leta 2. Pandas! I was recently in Chengdu to launch a new project and we took half the day to visit the Chengdu Research Base of Giant Pandas and I am a new panda convert. Yes, they’re docile and cute, but their lifestyles are utterly chill and deeply enviable for us adults with responsibilities. Giant pandas primarily eat bamboo and can consume 20-40 kilograms per day. When they’re not doing that, they’re sleeping. When we visited, many could be seen reclining on their backs, feasting on some of the finest bamboo they could select within arm’s reach. While not necessarily playful in appearance, they do seem quite cheeky in their agendas and will do as little as they can to make the most of their meals. It felt like I was watching a mirrored image of myself on a Sunday afternoon while trying to make the most of my last hours of the weekend. Photo: Courtesy of Aoiro 3. Aoiro I’m not really a candle personbut I love the luxurious subtlety of a fragrant space. It’s an intangible feeling that really can only be experienced in the present. Some of the best people to create these fragrances, in my opinion, are Shizuko and Manuel, the masterminds behind Aoiro, a Japanese and Austrian duo who have developed a keen sense for embodying the fragrances of some of the most intriguing and captivating olfactory atmospheres – earthy forest floors with crackling pine needles, blue cypress tickling the moon in an indigo sky, and rainfall on a spirited Japanese island. Despite living in an urban city, Aoiro’s olfactory design is capable of transporting me to the deepest forests of misty Yakushima island. Photo: Wade and Leta 4. Takuro Kuwata A few months ago, I saw the work of Japanese ceramicist Takuro Kuwata at an exhibition at Salon94 and have been having trouble getting it out of my head. Kuwata’s work exemplifies someone who has worked with a medium so much to completely use the medium as a medium – if that makes sense. His ability to manipulate clay and glaze and use it to create gravity-defying effects within the kiln are exceptionally mysterious to me and feel like they could only be accomplished with years and years of experimentation with the material. I’m equally impressed seeing how he’s grown his work with scale, juxtaposing it with familiar iconography like the fuzzy peach, but sculpting it from materials like bronze. Photo: Wade and Leta 5. The Site of Reversible Destiny, a park built by artists Arakawa and Gins, in Yoro Japan The park is a testament to their career as writers, architects, and their idea of reversible destiny, which in its most extreme form, eliminates death. For all that are willing to listen, Arakawa and Gins’ Reversible Destiny mentality aims to make our lives a little more youthful by encouraging us to reevaluate our relationship with architecture and our surroundings. The intention of “reversible destiny” is not to prolong death, postpone it, grow older alongside it, but to entirely not acknowledge and surpass it. Wadeand I have spent the last ten years traveling to as many of their remaining sites as possible to further understand this notion of creating spaces to extend our lives and question how conventional living spaces can become detrimental to our longevity.   Works by Wade and Leta: Photo: Wade and Leta and Matt Alexander Now You See Me is a large-scale installation in the heart of Shoreditch, London, that explores the relationship between positive and negative space through bold color, geometry, and light. Simple, familiar shapes are embedded within monolithic forms, creating a layered visual experience that shifts throughout the day. As sunlight passes through the structures, shadows and silhouettes stretch and connect, forming dynamic compositions on the surrounding concrete. Photo: Wade and Leta and John Wylie Paint Your Own Path is series of five towering sculptures, ranging from 10 to 15 feet tall, invites viewers to explore balance, tension, and perspective through bold color and form. Inspired by the delicate, often precarious act of stacking objects, the sculptures appear as if they might topple – yet each one holds steady, challenging perceptions of stability. Created in partnership with the Corolla Cross, the installation transforms its environment into a pop-colored landscape. Photo: Millenia Walk and Outer Edit, Eurthe Studio Monument to Movement is a 14-meter-tall kinetic sculpture that celebrates the spirit of the holiday season through rhythm, motion, and color. Rising skyward in layered compositions, the work symbolizes collective joy, renewal, and the shared energy of celebrations that span cultures and traditions. Powered by motors and constructed from metal beams and cardboard forms, the sculpture continuously shifts, inviting viewers to reflect on the passage of time and the cycles that connect us all. Photo: Wade and Leta and Erika Hara, Piotr Maslanka, and Jeremy Renault Falling Into Place is a vibrant rooftop installation at Ginza Six that explores themes of alignment, adaptability, and perspective. Six colorful structures – each with a void like a missing puzzle piece – serve as spaces for reflection, inviting visitors to consider their place within a greater whole. Rather than focusing on absence, the design transforms emptiness into opportunity, encouraging people to embrace spontaneity and the unfolding nature of life. Playful yet contemplative, the work emphasizes that only through connection and participation can the full picture come into view. Photo: Wade and Leta and Erika Hara, Piotr Maslanka, and Jeremy Renault Photo: Wade and Leta Stop, Listen, Look is a 7-meter-tall interactive artwork atop IFS Chengdu that captures the vibrant rhythm of the city through movement, sound, and form. Blending motorized and wind-powered elements with seesaws and sound modulation, it invites people of all ages to engage, play, and reflect. Inspired by Chengdu’s balance of tradition and modernity, the piece incorporates circular motifs from local symbolism alongside bold, geometric forms to create a dialogue between past and present. With light, motion, and community at its core, the work invites visitors to connect with the city – and each other – through shared interaction. The Cloud is a permanent sculptural kiosk in Burlington, Vermont’s historic City Hall Park, created in collaboration with Brooklyn-based Studio RENZ+OEI. Designed to reinterpret the ephemeral nature of clouds through architecture, it blends art, air, and imagination into a light, fluid structure that defies traditional rigidity. Originally born from a creative exchange between longtime friends and collaborators, the design challenges expectations of permanence by embodying movement and openness. Now home to a local food vendor, The Cloud brings a playful, uplifting presence to the park, inviting reflection and interaction rain or shine.. #leta #sobierajski #talks #giant #pandas
    DESIGN-MILK.COM
    F5: Leta Sobierajski Talks Giant Pandas, Sculptural Clothing + More
    When Leta Sobierajski enrolled in college, she already knew what she was meant to do, and she didn’t settle for anything less. “When I went to school for graphic design, I really didn’t have a backup plan – it was this, or nothing,” she says. “My work is a constantly evolving practice, and from the beginning, I have always convinced myself that if I put in the time and experimentation, I would grow and evolve.” After graduation, Sobierajski took on a range of projects, which included animation, print, and branding elements. She collaborated with corporate clients, but realized that she wouldn’t feel comfortable following anyone else’s rules in a 9-to-5 environment. Leta Sobierajski (standing) and Wade Jeffree (on ladder) \\\ Photo: Matt Dutile Sobierajski eventually decided to team up with fellow artist and kindred spirit Wade Jeffree. In 2016 they launched their Brooklyn-based studio, Wade and Leta. The duo, who share a taste for quirky aesthetics, produces sculpture, installations, or anything else they can dream up. Never static in thinking or method, they are constantly searching for another medium to try that will complement their shared vision of the moment. The pair is currently interested in permanency, and they want to utilize more metal, a strong material that will stand the test of time. Small architectural pieces are also on tap, and on a grander scale, they’d like to focus on a park or communal area that everyone can enjoy. With so many ideas swirling around, Sobierajski will record a concept in at least three different ways so that she’s sure to unearth it at a later date. “In some ways, I like to think I’m impeccably organized, as I have countless spreadsheets tracking our work, our lives, and our well-being,” she explains. “The reality is that I am great at over-complicating situations with my intensified list-making and note-taking. The only thing to do is to trust the process.” Today, Leta Sobierajski joins us for Friday Five! Photo: Melitta Baumeister and Michał Plata 1. Melitta Baumeister and Michał Plata The work of Melitta Baumeister and Michał Plata has been a constant inspiration to me for their innovative, artful, and architectural silhouettes. By a practice of draping and arduous pattern-making, the garments that they develop season after season feel like they could be designed for existence in another universe. I’m a person who likes to dress up for anything when I’m not in the studio, and every time I opt to wear one of their looks, I feel like I can take on the world. The best part about their pieces is that they’re extremely functional, so whether I need to hop on a bicycle or show up at an opening, I’m still able to make a statement – these garments even have the ability to strike up conversations on their own. Photo: Wade and Leta 2. Pandas! I was recently in Chengdu to launch a new project and we took half the day to visit the Chengdu Research Base of Giant Pandas and I am a new panda convert. Yes, they’re docile and cute, but their lifestyles are utterly chill and deeply enviable for us adults with responsibilities. Giant pandas primarily eat bamboo and can consume 20-40 kilograms per day. When they’re not doing that, they’re sleeping. When we visited, many could be seen reclining on their backs, feasting on some of the finest bamboo they could select within arm’s reach. While not necessarily playful in appearance, they do seem quite cheeky in their agendas and will do as little as they can to make the most of their meals. It felt like I was watching a mirrored image of myself on a Sunday afternoon while trying to make the most of my last hours of the weekend. Photo: Courtesy of Aoiro 3. Aoiro I’m not really a candle person (I forget to light it, and then I forget it’s lit, and then I panic when it’s been lit for too long) but I love the luxurious subtlety of a fragrant space. It’s an intangible feeling that really can only be experienced in the present. Some of the best people to create these fragrances, in my opinion, are Shizuko and Manuel, the masterminds behind Aoiro, a Japanese and Austrian duo who have developed a keen sense for embodying the fragrances of some of the most intriguing and captivating olfactory atmospheres – earthy forest floors with crackling pine needles, blue cypress tickling the moon in an indigo sky, and rainfall on a spirited Japanese island. Despite living in an urban city, Aoiro’s olfactory design is capable of transporting me to the deepest forests of misty Yakushima island. Photo: Wade and Leta 4. Takuro Kuwata A few months ago, I saw the work of Japanese ceramicist Takuro Kuwata at an exhibition at Salon94 and have been having trouble getting it out of my head. Kuwata’s work exemplifies someone who has worked with a medium so much to completely use the medium as a medium – if that makes sense. His ability to manipulate clay and glaze and use it to create gravity-defying effects within the kiln are exceptionally mysterious to me and feel like they could only be accomplished with years and years of experimentation with the material. I’m equally impressed seeing how he’s grown his work with scale, juxtaposing it with familiar iconography like the fuzzy peach, but sculpting it from materials like bronze. Photo: Wade and Leta 5. The Site of Reversible Destiny, a park built by artists Arakawa and Gins, in Yoro Japan The park is a testament to their career as writers, architects, and their idea of reversible destiny, which in its most extreme form, eliminates death. For all that are willing to listen, Arakawa and Gins’ Reversible Destiny mentality aims to make our lives a little more youthful by encouraging us to reevaluate our relationship with architecture and our surroundings. The intention of “reversible destiny” is not to prolong death, postpone it, grow older alongside it, but to entirely not acknowledge and surpass it. Wade (my partner) and I have spent the last ten years traveling to as many of their remaining sites as possible to further understand this notion of creating spaces to extend our lives and question how conventional living spaces can become detrimental to our longevity.   Works by Wade and Leta: Photo: Wade and Leta and Matt Alexander Now You See Me is a large-scale installation in the heart of Shoreditch, London, that explores the relationship between positive and negative space through bold color, geometry, and light. Simple, familiar shapes are embedded within monolithic forms, creating a layered visual experience that shifts throughout the day. As sunlight passes through the structures, shadows and silhouettes stretch and connect, forming dynamic compositions on the surrounding concrete. Photo: Wade and Leta and John Wylie Paint Your Own Path is series of five towering sculptures, ranging from 10 to 15 feet tall, invites viewers to explore balance, tension, and perspective through bold color and form. Inspired by the delicate, often precarious act of stacking objects, the sculptures appear as if they might topple – yet each one holds steady, challenging perceptions of stability. Created in partnership with the Corolla Cross, the installation transforms its environment into a pop-colored landscape. Photo: Millenia Walk and Outer Edit, Eurthe Studio Monument to Movement is a 14-meter-tall kinetic sculpture that celebrates the spirit of the holiday season through rhythm, motion, and color. Rising skyward in layered compositions, the work symbolizes collective joy, renewal, and the shared energy of celebrations that span cultures and traditions. Powered by motors and constructed from metal beams and cardboard forms, the sculpture continuously shifts, inviting viewers to reflect on the passage of time and the cycles that connect us all. Photo: Wade and Leta and Erika Hara, Piotr Maslanka, and Jeremy Renault Falling Into Place is a vibrant rooftop installation at Ginza Six that explores themes of alignment, adaptability, and perspective. Six colorful structures – each with a void like a missing puzzle piece – serve as spaces for reflection, inviting visitors to consider their place within a greater whole. Rather than focusing on absence, the design transforms emptiness into opportunity, encouraging people to embrace spontaneity and the unfolding nature of life. Playful yet contemplative, the work emphasizes that only through connection and participation can the full picture come into view. Photo: Wade and Leta and Erika Hara, Piotr Maslanka, and Jeremy Renault Photo: Wade and Leta Stop, Listen, Look is a 7-meter-tall interactive artwork atop IFS Chengdu that captures the vibrant rhythm of the city through movement, sound, and form. Blending motorized and wind-powered elements with seesaws and sound modulation, it invites people of all ages to engage, play, and reflect. Inspired by Chengdu’s balance of tradition and modernity, the piece incorporates circular motifs from local symbolism alongside bold, geometric forms to create a dialogue between past and present. With light, motion, and community at its core, the work invites visitors to connect with the city – and each other – through shared interaction. The Cloud is a permanent sculptural kiosk in Burlington, Vermont’s historic City Hall Park, created in collaboration with Brooklyn-based Studio RENZ+OEI. Designed to reinterpret the ephemeral nature of clouds through architecture, it blends art, air, and imagination into a light, fluid structure that defies traditional rigidity. Originally born from a creative exchange between longtime friends and collaborators, the design challenges expectations of permanence by embodying movement and openness. Now home to a local food vendor, The Cloud brings a playful, uplifting presence to the park, inviting reflection and interaction rain or shine..
    Like
    Love
    Wow
    Sad
    Angry
    502
    0 Commenti 0 condivisioni
  • 6 Years to Make a Fan, G370A Budget Case, & Phanteks Technical Fan Discussion, ft. CTO

    Cases News 6 Years to Make a Fan, G370A Budget Case, & Phanteks Technical Fan Discussion, ft. CTOJune 9, 2025Last Updated: 2025-06-09We cover Phanteks’ new G370A budget case, the XT M3, and the Evolv X2 MatrixThe HighlightsPhanteks’ new X2 Matrix case has 900 LEDs and is aiming to be around Phanteks’ G370A is a case that includes 3x120mm fansThe company has a new T30-140 fan that required 6 years of engineering to makeTable of ContentsAutoTOC Grab a GN Tear-Down Toolkit to support our AD-FREE reviews and IN-DEPTH testing while also getting a high-quality, highly portable 10-piece toolkit that was custom designed for use with video cards for repasting and water block installation. Includes a portable roll bag, hook hangers for pegboards, a storage compartment, and instructional GPU disassembly cards.IntroWe visited Phanteks’ suite at Computex 2025 and the company showed off several cases along with a fan that took the company roughly 6 years to make.Editor's note: This was originally published on May 21, 2025 as a video. This content has been adapted to written format for this article and is unchanged from the original publication.CreditsHostSteve BurkeCamera, Video EditingMike GaglioneVitalii MakhnovetsWriting, Web EditingJimmy ThangPhanteks Matrix CasesWe’ve talked about Phanteks’ X2 case in the past but the company was showing off its new Matrix version, which has matrix LEDs. The X2 Matrix has 900 LEDs in a 10x90 layout. It’s supposed to be about to more expensive than the base X2, which means it should end up around   The interesting thing about the case is that the LEDs wrap around the chassis. In terms of communication, the LEDs connect to the motherboard via USB 2.0 and use SATA for power. This allows Phanteks to bypass a WinRing 0 type situation. Another Matrix case had 600 of them in a 10x60 LED configuration and is supposed to be about  Phanteks also has software that allows you to reconfigure what the LEDs display. When we got to the company’s suite, it had been programmed to say, “Gamers Nexus here,” which was cool to see. We also saw that the LEDs can also be used to highlight CPU temperature. Phanteks G370A Grab a GN15 Large Anti-Static Modmat to celebrate our 15th Anniversary and for a high-quality PC building work surface. The Modmat features useful PC building diagrams and is anti-static conductive. Purchases directly fund our work!Phanteks also showed off its G370A case, which is a case that includes 3x120mm fans in the front coupled with a mesh front that offers 38% hole porosity. The company tells us that manufacturing typically offers around 25% porosity.  It has a glass side panel and the back side panel of the case is just steel and has no ventilation. Taking a look at the placement of the front fans, we asked Phanteks why they weren’t higher on the case so the bottom fan could get more exposure to the bottom power supply shroud area and the answer the company gave us was simply clearance for a 360mm radiator at the top. There’s not a lot of room for the air coming into the shroud. Some of it will go through the cable pass-through if it’s empty. The back of the case features a drive mount.XTM3The company also showed off a Micro ATX case called the XTM3. It comes with 3 fans and is For its front panel, it has a unique punch out for its fans. The top panel is part standard ventilation but it does have one side that provides less airflow, which covers where the PSU would exhaust out of. The side panel does have punch-outs for the PSU, however. We don’t test power supplies, though that may change in the future. Power supplies can take a lot of thermal abuse, however, so we’re not super concerned here.  The case should be shipping in the next month or so and is 39.5 liters, which includes the feet. We appreciate that as not a lot of companies will factor that in. There’s also a lot of cable management depth on the back and the case also supports BTF. In addition, there’s a panel that clamps down all of the power supply cables. T30 FanPhanteks’ T30 fan took the company 6 years to make and is a 140mm fan. The company is competing with Noctua in the high-end fan space, but is going for a grey theme instead of brown. Phanteks CTO Tenzin Rongen Interview Visit our Patreon page to contribute a few dollars toward this website's operationAdditionally, when you purchase through links to retailers on our site, we may earn a small affiliate commission.Finally, we interviewed Phanteks CTO Tenzin Rongen to discuss technical details behind the company’s long-developed fans. Make sure to check it out in our video.
    #years #make #fan #g370a #budget
    6 Years to Make a Fan, G370A Budget Case, & Phanteks Technical Fan Discussion, ft. CTO
    Cases News 6 Years to Make a Fan, G370A Budget Case, & Phanteks Technical Fan Discussion, ft. CTOJune 9, 2025Last Updated: 2025-06-09We cover Phanteks’ new G370A budget case, the XT M3, and the Evolv X2 MatrixThe HighlightsPhanteks’ new X2 Matrix case has 900 LEDs and is aiming to be around Phanteks’ G370A is a case that includes 3x120mm fansThe company has a new T30-140 fan that required 6 years of engineering to makeTable of ContentsAutoTOC Grab a GN Tear-Down Toolkit to support our AD-FREE reviews and IN-DEPTH testing while also getting a high-quality, highly portable 10-piece toolkit that was custom designed for use with video cards for repasting and water block installation. Includes a portable roll bag, hook hangers for pegboards, a storage compartment, and instructional GPU disassembly cards.IntroWe visited Phanteks’ suite at Computex 2025 and the company showed off several cases along with a fan that took the company roughly 6 years to make.Editor's note: This was originally published on May 21, 2025 as a video. This content has been adapted to written format for this article and is unchanged from the original publication.CreditsHostSteve BurkeCamera, Video EditingMike GaglioneVitalii MakhnovetsWriting, Web EditingJimmy ThangPhanteks Matrix CasesWe’ve talked about Phanteks’ X2 case in the past but the company was showing off its new Matrix version, which has matrix LEDs. The X2 Matrix has 900 LEDs in a 10x90 layout. It’s supposed to be about to more expensive than the base X2, which means it should end up around   The interesting thing about the case is that the LEDs wrap around the chassis. In terms of communication, the LEDs connect to the motherboard via USB 2.0 and use SATA for power. This allows Phanteks to bypass a WinRing 0 type situation. Another Matrix case had 600 of them in a 10x60 LED configuration and is supposed to be about  Phanteks also has software that allows you to reconfigure what the LEDs display. When we got to the company’s suite, it had been programmed to say, “Gamers Nexus here,” which was cool to see. We also saw that the LEDs can also be used to highlight CPU temperature. Phanteks G370A Grab a GN15 Large Anti-Static Modmat to celebrate our 15th Anniversary and for a high-quality PC building work surface. The Modmat features useful PC building diagrams and is anti-static conductive. Purchases directly fund our work!Phanteks also showed off its G370A case, which is a case that includes 3x120mm fans in the front coupled with a mesh front that offers 38% hole porosity. The company tells us that manufacturing typically offers around 25% porosity.  It has a glass side panel and the back side panel of the case is just steel and has no ventilation. Taking a look at the placement of the front fans, we asked Phanteks why they weren’t higher on the case so the bottom fan could get more exposure to the bottom power supply shroud area and the answer the company gave us was simply clearance for a 360mm radiator at the top. There’s not a lot of room for the air coming into the shroud. Some of it will go through the cable pass-through if it’s empty. The back of the case features a drive mount.XTM3The company also showed off a Micro ATX case called the XTM3. It comes with 3 fans and is For its front panel, it has a unique punch out for its fans. The top panel is part standard ventilation but it does have one side that provides less airflow, which covers where the PSU would exhaust out of. The side panel does have punch-outs for the PSU, however. We don’t test power supplies, though that may change in the future. Power supplies can take a lot of thermal abuse, however, so we’re not super concerned here.  The case should be shipping in the next month or so and is 39.5 liters, which includes the feet. We appreciate that as not a lot of companies will factor that in. There’s also a lot of cable management depth on the back and the case also supports BTF. In addition, there’s a panel that clamps down all of the power supply cables. T30 FanPhanteks’ T30 fan took the company 6 years to make and is a 140mm fan. The company is competing with Noctua in the high-end fan space, but is going for a grey theme instead of brown. Phanteks CTO Tenzin Rongen Interview Visit our Patreon page to contribute a few dollars toward this website's operationAdditionally, when you purchase through links to retailers on our site, we may earn a small affiliate commission.Finally, we interviewed Phanteks CTO Tenzin Rongen to discuss technical details behind the company’s long-developed fans. Make sure to check it out in our video. #years #make #fan #g370a #budget
    GAMERSNEXUS.NET
    6 Years to Make a Fan, G370A Budget Case, & Phanteks Technical Fan Discussion, ft. CTO
    Cases News 6 Years to Make a Fan, G370A Budget Case, & Phanteks Technical Fan Discussion, ft. CTOJune 9, 2025Last Updated: 2025-06-09We cover Phanteks’ new G370A budget case, the XT M3, and the Evolv X2 MatrixThe HighlightsPhanteks’ new X2 Matrix case has 900 LEDs and is aiming to be around $200Phanteks’ G370A is a $60 case that includes 3x120mm fansThe company has a new T30-140 fan that required 6 years of engineering to makeTable of ContentsAutoTOC Grab a GN Tear-Down Toolkit to support our AD-FREE reviews and IN-DEPTH testing while also getting a high-quality, highly portable 10-piece toolkit that was custom designed for use with video cards for repasting and water block installation. Includes a portable roll bag, hook hangers for pegboards, a storage compartment, and instructional GPU disassembly cards.IntroWe visited Phanteks’ suite at Computex 2025 and the company showed off several cases along with a fan that took the company roughly 6 years to make.Editor's note: This was originally published on May 21, 2025 as a video. This content has been adapted to written format for this article and is unchanged from the original publication.CreditsHostSteve BurkeCamera, Video EditingMike GaglioneVitalii MakhnovetsWriting, Web EditingJimmy ThangPhanteks Matrix CasesWe’ve talked about Phanteks’ X2 case in the past but the company was showing off its new Matrix version, which has matrix LEDs. The X2 Matrix has 900 LEDs in a 10x90 layout. It’s supposed to be about $30 to $40 more expensive than the base X2, which means it should end up around $200.  The interesting thing about the case is that the LEDs wrap around the chassis. In terms of communication, the LEDs connect to the motherboard via USB 2.0 and use SATA for power. This allows Phanteks to bypass a WinRing 0 type situation. Another Matrix case had 600 of them in a 10x60 LED configuration and is supposed to be about $120. Phanteks also has software that allows you to reconfigure what the LEDs display. When we got to the company’s suite, it had been programmed to say, “Gamers Nexus here,” which was cool to see. We also saw that the LEDs can also be used to highlight CPU temperature. Phanteks G370A Grab a GN15 Large Anti-Static Modmat to celebrate our 15th Anniversary and for a high-quality PC building work surface. The Modmat features useful PC building diagrams and is anti-static conductive. Purchases directly fund our work! (or consider a direct donation or a Patreon contribution!)Phanteks also showed off its G370A case, which is a $60 case that includes 3x120mm fans in the front coupled with a mesh front that offers 38% hole porosity. The company tells us that manufacturing typically offers around 25% porosity.  It has a glass side panel and the back side panel of the case is just steel and has no ventilation. Taking a look at the placement of the front fans, we asked Phanteks why they weren’t higher on the case so the bottom fan could get more exposure to the bottom power supply shroud area and the answer the company gave us was simply clearance for a 360mm radiator at the top. There’s not a lot of room for the air coming into the shroud. Some of it will go through the cable pass-through if it’s empty. The back of the case features a drive mount.XTM3The company also showed off a Micro ATX case called the XTM3. It comes with 3 fans and is $70. For its front panel, it has a unique punch out for its fans. The top panel is part standard ventilation but it does have one side that provides less airflow, which covers where the PSU would exhaust out of. The side panel does have punch-outs for the PSU, however. We don’t test power supplies, though that may change in the future. Power supplies can take a lot of thermal abuse, however, so we’re not super concerned here.  The case should be shipping in the next month or so and is 39.5 liters, which includes the feet. We appreciate that as not a lot of companies will factor that in. There’s also a lot of cable management depth on the back and the case also supports BTF. In addition, there’s a panel that clamps down all of the power supply cables. T30 FanPhanteks’ T30 fan took the company 6 years to make and is a 140mm fan. The company is competing with Noctua in the high-end fan space, but is going for a grey theme instead of brown. Phanteks CTO Tenzin Rongen Interview Visit our Patreon page to contribute a few dollars toward this website's operation (or consider a direct donation or buying something from our GN Store!) Additionally, when you purchase through links to retailers on our site, we may earn a small affiliate commission.Finally, we interviewed Phanteks CTO Tenzin Rongen to discuss technical details behind the company’s long-developed fans. Make sure to check it out in our video.
    0 Commenti 0 condivisioni
  • Scythe Solvency Update, "Scycopter" Liquid Cooler, New $45 Air Coolers

    Coolers News Scythe Solvency Update, "Scycopter" Liquid Cooler, New Air CoolersJune 10, 2025Last Updated: 2025-06-10We looked at Scythe’s Scycopter liquid cooler, Magoroku air cooler, Big Shuriken 4, and moreThe HighlightsScythe showed off its liquid cooler, which is currently going by the working name “Scycopter”The Magoruku is a CPU cooler that’s supposed to be relatively high performing with 6x6mm heat pipes coupled with a nickel-plated copper cold plateWe talked to Scythe about the news of its European branch closing downTable of ContentsAutoTOC Grab a GN Tear-Down Toolkit to support our AD-FREE reviews and IN-DEPTH testing while also getting a high-quality, highly portable 10-piece toolkit that was custom designed for use with video cards for repasting and water block installation. Includes a portable roll bag, hook hangers for pegboards, a storage compartment, and instructional GPU disassembly cards.IntroWe visited Scythe’s booth at Computex 2025 and the company showed off several new coolers, including a mockup of a liquid cooler. Our visit comes off the heels of the news that Scythe will be closing its European branch, which we discussed with the company.Editor's note: This was originally published on May 22, 2025 as a video. This content has been adapted to written format for this article and is unchanged from the original publication.CreditsHostSteve BurkeCamera, Video EditingMike GaglioneVitalii MakhnovetsWriting, Web EditingJimmy ThangScythe Liquid CoolerTo our knowledge, we saw Scythe’s first liquid cooler at the show. We spoke with Kitagawa-san, lead designer at Scythe, who told us that he spent about the last year studying liquid coolers. The company also showed us a 3D-printed prototype peg with a piece of tape underneath it, which allows you to essentially stick it to any fan you want. A fan can then socket on top of the cooler and be angled to shoot air down toward the VRM or RAM, etc. The working name of the liquid cooler is the “Scycopter,” which is really cool and is a combination of Scythe and helicopter. Currently, the radiator thickness is pretty standard at 27mm, but that might change. The standard pump block will have an option that will allow you to install a fan on top of it. For the fins, the pitch is .1mm. That makes them pretty close together. Scythe also tells us that the total height of the copper coldplate is 1.6mm. Magoruku Grab a GN15 Large Anti-Static Modmat to celebrate our 15th Anniversary and for a high-quality PC building work surface. The Modmat features useful PC building diagrams and is anti-static conductive. Purchases directly fund our work!We showed Scythe’s Magoruku CPU cooler at last year’s Computex, but it’s coming out now. It’s supposed to be but the company tells us that it might be able to bring it down to in the US depending on market conditions. The Magoruku is supposed to be a relatively high-performing, mid-range/budget cooler. Scythe is going with a flat nickel-plated copper for its cold plate coupled with 6x6mm heat pipes. The company is using 2x120mm “Wonder Tornado” fans as Scythe calls them. They are 25mm-thick fans and use metal brackets to adjust the fan height. Mugen 6 TUFThe Mugen 6 TUF is an ASUS-themed version of the CPU cooler. Big Shuriken 4Scythe also showed off its Big Shuriken 4 CPU cooler, which the company also showed last year, but is now about final. It has cut-outs on the side of the fan, which Scythe says helps with performance as it allows air to escape from the sides. One of the things that Scythe is trying to figure out with the Big Shuriken 4 is whether to make it all black or ARGB. Scythe Closing Its European Branch Visit our Patreon page to contribute a few dollars toward this website's operationAdditionally, when you purchase through links to retailers on our site, we may earn a small affiliate commission.In regards to Scythe’s closed European branch, it sounds like the company is restructuring and moving operations to Taiwan. Scythe tells us it will still ship and sell to European customers.
    #scythe #solvency #update #quotscycopterquot #liquid
    Scythe Solvency Update, "Scycopter" Liquid Cooler, New $45 Air Coolers
    Coolers News Scythe Solvency Update, "Scycopter" Liquid Cooler, New Air CoolersJune 10, 2025Last Updated: 2025-06-10We looked at Scythe’s Scycopter liquid cooler, Magoroku air cooler, Big Shuriken 4, and moreThe HighlightsScythe showed off its liquid cooler, which is currently going by the working name “Scycopter”The Magoruku is a CPU cooler that’s supposed to be relatively high performing with 6x6mm heat pipes coupled with a nickel-plated copper cold plateWe talked to Scythe about the news of its European branch closing downTable of ContentsAutoTOC Grab a GN Tear-Down Toolkit to support our AD-FREE reviews and IN-DEPTH testing while also getting a high-quality, highly portable 10-piece toolkit that was custom designed for use with video cards for repasting and water block installation. Includes a portable roll bag, hook hangers for pegboards, a storage compartment, and instructional GPU disassembly cards.IntroWe visited Scythe’s booth at Computex 2025 and the company showed off several new coolers, including a mockup of a liquid cooler. Our visit comes off the heels of the news that Scythe will be closing its European branch, which we discussed with the company.Editor's note: This was originally published on May 22, 2025 as a video. This content has been adapted to written format for this article and is unchanged from the original publication.CreditsHostSteve BurkeCamera, Video EditingMike GaglioneVitalii MakhnovetsWriting, Web EditingJimmy ThangScythe Liquid CoolerTo our knowledge, we saw Scythe’s first liquid cooler at the show. We spoke with Kitagawa-san, lead designer at Scythe, who told us that he spent about the last year studying liquid coolers. The company also showed us a 3D-printed prototype peg with a piece of tape underneath it, which allows you to essentially stick it to any fan you want. A fan can then socket on top of the cooler and be angled to shoot air down toward the VRM or RAM, etc. The working name of the liquid cooler is the “Scycopter,” which is really cool and is a combination of Scythe and helicopter. Currently, the radiator thickness is pretty standard at 27mm, but that might change. The standard pump block will have an option that will allow you to install a fan on top of it. For the fins, the pitch is .1mm. That makes them pretty close together. Scythe also tells us that the total height of the copper coldplate is 1.6mm. Magoruku Grab a GN15 Large Anti-Static Modmat to celebrate our 15th Anniversary and for a high-quality PC building work surface. The Modmat features useful PC building diagrams and is anti-static conductive. Purchases directly fund our work!We showed Scythe’s Magoruku CPU cooler at last year’s Computex, but it’s coming out now. It’s supposed to be but the company tells us that it might be able to bring it down to in the US depending on market conditions. The Magoruku is supposed to be a relatively high-performing, mid-range/budget cooler. Scythe is going with a flat nickel-plated copper for its cold plate coupled with 6x6mm heat pipes. The company is using 2x120mm “Wonder Tornado” fans as Scythe calls them. They are 25mm-thick fans and use metal brackets to adjust the fan height. Mugen 6 TUFThe Mugen 6 TUF is an ASUS-themed version of the CPU cooler. Big Shuriken 4Scythe also showed off its Big Shuriken 4 CPU cooler, which the company also showed last year, but is now about final. It has cut-outs on the side of the fan, which Scythe says helps with performance as it allows air to escape from the sides. One of the things that Scythe is trying to figure out with the Big Shuriken 4 is whether to make it all black or ARGB. Scythe Closing Its European Branch Visit our Patreon page to contribute a few dollars toward this website's operationAdditionally, when you purchase through links to retailers on our site, we may earn a small affiliate commission.In regards to Scythe’s closed European branch, it sounds like the company is restructuring and moving operations to Taiwan. Scythe tells us it will still ship and sell to European customers. #scythe #solvency #update #quotscycopterquot #liquid
    GAMERSNEXUS.NET
    Scythe Solvency Update, "Scycopter" Liquid Cooler, New $45 Air Coolers
    Coolers News Scythe Solvency Update, "Scycopter" Liquid Cooler, New $45 Air CoolersJune 10, 2025Last Updated: 2025-06-10We looked at Scythe’s Scycopter liquid cooler, Magoroku air cooler, Big Shuriken 4, and moreThe HighlightsScythe showed off its liquid cooler, which is currently going by the working name “Scycopter”The Magoruku is a $50 CPU cooler that’s supposed to be relatively high performing with 6x6mm heat pipes coupled with a nickel-plated copper cold plateWe talked to Scythe about the news of its European branch closing downTable of ContentsAutoTOC Grab a GN Tear-Down Toolkit to support our AD-FREE reviews and IN-DEPTH testing while also getting a high-quality, highly portable 10-piece toolkit that was custom designed for use with video cards for repasting and water block installation. Includes a portable roll bag, hook hangers for pegboards, a storage compartment, and instructional GPU disassembly cards.IntroWe visited Scythe’s booth at Computex 2025 and the company showed off several new coolers, including a mockup of a liquid cooler. Our visit comes off the heels of the news that Scythe will be closing its European branch, which we discussed with the company.Editor's note: This was originally published on May 22, 2025 as a video. This content has been adapted to written format for this article and is unchanged from the original publication.CreditsHostSteve BurkeCamera, Video EditingMike GaglioneVitalii MakhnovetsWriting, Web EditingJimmy ThangScythe Liquid CoolerTo our knowledge, we saw Scythe’s first liquid cooler at the show. We spoke with Kitagawa-san, lead designer at Scythe, who told us that he spent about the last year studying liquid coolers. The company also showed us a 3D-printed prototype peg with a piece of tape underneath it, which allows you to essentially stick it to any fan you want. A fan can then socket on top of the cooler and be angled to shoot air down toward the VRM or RAM, etc. The working name of the liquid cooler is the “Scycopter,” which is really cool and is a combination of Scythe and helicopter. Currently, the radiator thickness is pretty standard at 27mm, but that might change. The standard pump block will have an option that will allow you to install a fan on top of it. For the fins, the pitch is .1mm. That makes them pretty close together. Scythe also tells us that the total height of the copper coldplate is 1.6mm. Magoruku Grab a GN15 Large Anti-Static Modmat to celebrate our 15th Anniversary and for a high-quality PC building work surface. The Modmat features useful PC building diagrams and is anti-static conductive. Purchases directly fund our work! (or consider a direct donation or a Patreon contribution!)We showed Scythe’s Magoruku CPU cooler at last year’s Computex, but it’s coming out now. It’s supposed to be $50, but the company tells us that it might be able to bring it down to $44 in the US depending on market conditions. The Magoruku is supposed to be a relatively high-performing, mid-range/budget cooler. Scythe is going with a flat nickel-plated copper for its cold plate coupled with 6x6mm heat pipes. The company is using 2x120mm “Wonder Tornado” fans as Scythe calls them. They are 25mm-thick fans and use metal brackets to adjust the fan height. Mugen 6 TUFThe Mugen 6 TUF is an ASUS-themed version of the CPU cooler. Big Shuriken 4Scythe also showed off its Big Shuriken 4 CPU cooler, which the company also showed last year, but is now about final. It has cut-outs on the side of the fan, which Scythe says helps with performance as it allows air to escape from the sides. One of the things that Scythe is trying to figure out with the Big Shuriken 4 is whether to make it all black or ARGB. Scythe Closing Its European Branch Visit our Patreon page to contribute a few dollars toward this website's operation (or consider a direct donation or buying something from our GN Store!) Additionally, when you purchase through links to retailers on our site, we may earn a small affiliate commission.In regards to Scythe’s closed European branch, it sounds like the company is restructuring and moving operations to Taiwan. Scythe tells us it will still ship and sell to European customers.
    0 Commenti 0 condivisioni
  • 15 riveting images from the 2025 UN World Oceans Day Photo Competition

    Big and Small Underwater Faces — 3rd Place.
    Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals. Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.
     
    Credit: Lars von Ritter Zahony/ World Ocean’s Day

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating imageof Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition.
    Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore/ United Nations World Oceans Day www.unworldoceansday.org
    Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide, Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us.
    This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography.
    Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacierin the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection.Credit: Pedro Carrillo/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez/ United Nations World Oceans Day www.unworldoceansday.org
     Above Water Seascapes — 2nd PlaceNorthern gannetssoar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kphas they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meterswith the winds up to 30 kph.Credit: Nur Tucker/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke/ United Nations World Oceans Day www.unworldoceansday.org
    Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters, about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus. As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione/ United Nations World Oceans Day www.unworldoceansday.org
    Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnetwas captured in the Sea of Japan, about 50 milessouthwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters, under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfishcaptured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa/ United Nations World Oceans Day www.unworldoceansday.org
    #riveting #images #world #oceans #dayphoto
    15 riveting images from the 2025 UN World Oceans Day Photo Competition
    Big and Small Underwater Faces — 3rd Place. Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals. Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.   Credit: Lars von Ritter Zahony/ World Ocean’s Day Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating imageof Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition. Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore/ United Nations World Oceans Day www.unworldoceansday.org Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide, Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us. This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography. Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacierin the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection.Credit: Pedro Carrillo/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez/ United Nations World Oceans Day www.unworldoceansday.org  Above Water Seascapes — 2nd PlaceNorthern gannetssoar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kphas they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meterswith the winds up to 30 kph.Credit: Nur Tucker/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke/ United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters, about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus. As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione/ United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnetwas captured in the Sea of Japan, about 50 milessouthwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters, under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfishcaptured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa/ United Nations World Oceans Day www.unworldoceansday.org #riveting #images #world #oceans #dayphoto
    WWW.POPSCI.COM
    15 riveting images from the 2025 UN World Oceans Day Photo Competition
    Big and Small Underwater Faces — 3rd Place. Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals (Hydrurga leptonyx). Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.   Credit: Lars von Ritter Zahony (Germany) / World Ocean’s Day Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating image (seen below) of Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition. Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore (USA) / United Nations World Oceans Day www.unworldoceansday.org Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide (DPG), Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us. This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography. Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony (Germany) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin (Austria) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacier (aka Petzval Glacier) in the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik (Russia) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection. (Model: Yolanda Garcia)Credit: Pedro Carrillo (Spain) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola (Spain) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert (Mauritius) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez (USA) / United Nations World Oceans Day www.unworldoceansday.org  Above Water Seascapes — 2nd PlaceNorthern gannets (Morus bassanus) soar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kph (60 mph) as they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meters (650 feet) with the winds up to 30 kph (20 mph).Credit: Nur Tucker (UK/Turkey) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay (South Africa) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke (UK) / United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters (65 feet), about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus (Tremoctopus sp.). As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione (Italy) / United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnet (Chirolophis japonicus) was captured in the Sea of Japan, about 50 miles (80 kilometers) southwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters (100 feet), under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik (Russia) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfish (Platax pinnatus) captured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa (Spain) / United Nations World Oceans Day www.unworldoceansday.org
    0 Commenti 0 condivisioni
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Commenti 0 condivisioni
  • Punctured Photographs by Yael Martínez Illuminate the Daily Ruptures of Systemic Violence

    “El Hombre y la Montaña”. All images courtesy of This Book Is True, shared with permission
    Punctured Photographs by Yael Martínez Illuminate the Daily Ruptures of Systemic Violence
    June 13, 2025
    Grace Ebert

    The Mexican state of Guerrero lies on the southern Pacific coast and is home to the popular tourist destination of Acapulco. It’s also one of the nation’s most violent areas due to drug trafficking and cartel presence, and is one of six states that account for nearly half of the country’s total homicides.
    For artist and photographer Yael Martínez, the reality of organized crime became more pronounced when, in 2013, three of his family members disappeared. He began to speak with others in his community who had experienced similar traumas and to connect threads across the borders of Mexico to Honduras, Brazil, and the United States.
    “Itzel at home,” Guerrero, Mexico
    Luciérnagas, which translates to fireflies, comes from Martínez’s meditation on this extreme brutality that “infiltrates daily life and transforms the spirit of a place,” a statement says. Now published in a volume by This Book Is True, the poetic series punctures dark, nighttime photographs with minuscule holes. When backlit, the images bear a dazzling constellation of light that distorts the images in which violence isn’t depicted but rather felt.
    In one work, for example, a man holding a firework stands in a poppy field, a perforated cloud of smoke enveloping his figure. He’s performing an annual ritual on the sacred hill of La Garza, and the setting exemplifies a poignant contradiction between ancestral cultures and a crop that has been subsumed by capitalism and is essential to cartel power. A statement elaborates:

    We don’t see death in Luciérnaga, but its omnipresence is felt throughout, lingering in the shadows of each photograph. Each image painfully underwritten by the result of a calculated violence that visited unseen and undetected, leaving behind the immense void of a vanished loved one. And yet there is always a sense of hope that informs the making of this work.

    Luciérnagas is available from This Book Is True. Find more from Martínez on Instagram.
    “Toro”, Guerrero, Mexico
    “Abuelo-Estrella”, Cochoapa El Grande, Guerrero, Mexico
    “Levantada de Cruz”“El Río de la Memoria y Mis Hijas”Next article
    #punctured #photographs #yael #martínez #illuminate
    Punctured Photographs by Yael Martínez Illuminate the Daily Ruptures of Systemic Violence
    “El Hombre y la Montaña”. All images courtesy of This Book Is True, shared with permission Punctured Photographs by Yael Martínez Illuminate the Daily Ruptures of Systemic Violence June 13, 2025 Grace Ebert The Mexican state of Guerrero lies on the southern Pacific coast and is home to the popular tourist destination of Acapulco. It’s also one of the nation’s most violent areas due to drug trafficking and cartel presence, and is one of six states that account for nearly half of the country’s total homicides. For artist and photographer Yael Martínez, the reality of organized crime became more pronounced when, in 2013, three of his family members disappeared. He began to speak with others in his community who had experienced similar traumas and to connect threads across the borders of Mexico to Honduras, Brazil, and the United States. “Itzel at home,” Guerrero, Mexico Luciérnagas, which translates to fireflies, comes from Martínez’s meditation on this extreme brutality that “infiltrates daily life and transforms the spirit of a place,” a statement says. Now published in a volume by This Book Is True, the poetic series punctures dark, nighttime photographs with minuscule holes. When backlit, the images bear a dazzling constellation of light that distorts the images in which violence isn’t depicted but rather felt. In one work, for example, a man holding a firework stands in a poppy field, a perforated cloud of smoke enveloping his figure. He’s performing an annual ritual on the sacred hill of La Garza, and the setting exemplifies a poignant contradiction between ancestral cultures and a crop that has been subsumed by capitalism and is essential to cartel power. A statement elaborates: We don’t see death in Luciérnaga, but its omnipresence is felt throughout, lingering in the shadows of each photograph. Each image painfully underwritten by the result of a calculated violence that visited unseen and undetected, leaving behind the immense void of a vanished loved one. And yet there is always a sense of hope that informs the making of this work. Luciérnagas is available from This Book Is True. Find more from Martínez on Instagram. “Toro”, Guerrero, Mexico “Abuelo-Estrella”, Cochoapa El Grande, Guerrero, Mexico “Levantada de Cruz”“El Río de la Memoria y Mis Hijas”Next article #punctured #photographs #yael #martínez #illuminate
    WWW.THISISCOLOSSAL.COM
    Punctured Photographs by Yael Martínez Illuminate the Daily Ruptures of Systemic Violence
    “El Hombre y la Montaña” (December 31, 2020). All images courtesy of This Book Is True, shared with permission Punctured Photographs by Yael Martínez Illuminate the Daily Ruptures of Systemic Violence June 13, 2025 Grace Ebert The Mexican state of Guerrero lies on the southern Pacific coast and is home to the popular tourist destination of Acapulco. It’s also one of the nation’s most violent areas due to drug trafficking and cartel presence, and is one of six states that account for nearly half of the country’s total homicides. For artist and photographer Yael Martínez, the reality of organized crime became more pronounced when, in 2013, three of his family members disappeared. He began to speak with others in his community who had experienced similar traumas and to connect threads across the borders of Mexico to Honduras, Brazil, and the United States. “Itzel at home,” Guerrero, Mexico Luciérnagas, which translates to fireflies, comes from Martínez’s meditation on this extreme brutality that “infiltrates daily life and transforms the spirit of a place,” a statement says. Now published in a volume by This Book Is True, the poetic series punctures dark, nighttime photographs with minuscule holes. When backlit, the images bear a dazzling constellation of light that distorts the images in which violence isn’t depicted but rather felt. In one work, for example, a man holding a firework stands in a poppy field, a perforated cloud of smoke enveloping his figure. He’s performing an annual ritual on the sacred hill of La Garza, and the setting exemplifies a poignant contradiction between ancestral cultures and a crop that has been subsumed by capitalism and is essential to cartel power. A statement elaborates: We don’t see death in Luciérnaga, but its omnipresence is felt throughout, lingering in the shadows of each photograph. Each image painfully underwritten by the result of a calculated violence that visited unseen and undetected, leaving behind the immense void of a vanished loved one. And yet there is always a sense of hope that informs the making of this work. Luciérnagas is available from This Book Is True. Find more from Martínez on Instagram. “Toro” (2018), Guerrero, Mexico “Abuelo-Estrella” (December 21, 2020), Cochoapa El Grande, Guerrero, Mexico “Levantada de Cruz” (2021) “El Río de la Memoria y Mis Hijas” (2022) Next article
    0 Commenti 0 condivisioni
  • Will Gamble Architects restores and extends Hertfordshire farmhouse

    The farmhouse, Flint Farm, in North Hertfordshire, was in poor condition with a number of unsympathetic additions that had altered its character over the years.
    Will Gamble Architects was appointed to restore and extend it for a young couple who wanted to transform it into their long-term family home and improve the house’s relationship with its garden and wider farmyard setting.
    While the original brief had been to replace an existing conservatory with a new extension, the practice encouraged the client to extend by integrating an adjacent barn into the envelope of the reworked house, changing the way the property was used.Advertisement

    Existing unsympathetic extensions were removed and the internal layout was reconfigured, with a new linking element added between the barn and farmhouse.
    The series of internal spaces that has been created is designed to retain the character of the historic listed property.
    Architect’s view
    The barn was sensitively restored and converted into an informal living space. Its timber-framed structure was refurbished and left exposed to celebrate the historic fabric of the barn and the craftsmanship of its original construction. A contemporary picture window with parts of the historic timber frame exposed within its reveals frames a view of the garden, as well as the barn’s unique structure.
    The extension, that links both barn and farmhouse, is deliberately contemporary in appearance to ensure that the historic buildings remain legible. It’s low-rise, built into the sloping garden and particularly lightweight in appearance. Floor-to-ceiling glass sits on a plinth of semi-knapped flint, rooting the intervention into the garden. A ribbon of black steel, with shallow peaks and troughs hovers above. The form of this ribbon draws inspiration from the distinctive black timber-clad gables that characterise the farmhouse and the surrounding outbuildings of the old farmstead.
    Internally the addition’s structure is exposed, much like the historic timber framed structure of the farmhouse and the barn. The interiors are tactile, defined by texture and pattern and inspired by the characteristics of the old farmstead.
    Miles Kelsey, associate, Will Gamble ArchitectsAdvertisement

    Client’s view
    We bought the farmhouse as a family home to move out of our two-bed flat in north London.
    Will visited the farmhouse with us whilst we were working through the purchase to understand what we were looking to do and went on to support us through each stage.
    The farmhouse was a combination of the original 16th century timber-framed building that had been added to with unattractive, unusable, and poorly planned extensions that meant the house was completely disconnected from the garden.
    Will and Miles transformed the whole house including moving the front door, converting an adjacent barn and building the modern extension as our kitchen and dining room that makes the best of the garden and views.
    The process that Will and Miles ran was a perfect balance of what we wanted, Sophie’s specific tastes and creativity combined with the benefit of the architects views and what they have done before.
    What really stood out to us was the way they worked with the council during the planning process so we got consent for almost everything we wanted, expressing their own views but ensuring we were always leading the process and the attention to detail during the build stage.
    Overall we are incredibly happy with what Will and Miles helped us create and the way they led us through the whole process.

      Source:Will Gamble Architects

    Project data
    Location North Hertfordshire
    Start on site April 2023
    Completion February 2025
    Gross internal floor area 320m2
    Form of contract or procurement route JCT MW Building Contract. Design-Bid-Build
    Architect Will Gamble Architects
    Client Private
    Structural engineer Axiom Structures
    Principal designer Will Gamble Architects
    Main contractor Elite Construction
    #will #gamble #architects #restores #extends
    Will Gamble Architects restores and extends Hertfordshire farmhouse
    The farmhouse, Flint Farm, in North Hertfordshire, was in poor condition with a number of unsympathetic additions that had altered its character over the years. Will Gamble Architects was appointed to restore and extend it for a young couple who wanted to transform it into their long-term family home and improve the house’s relationship with its garden and wider farmyard setting. While the original brief had been to replace an existing conservatory with a new extension, the practice encouraged the client to extend by integrating an adjacent barn into the envelope of the reworked house, changing the way the property was used.Advertisement Existing unsympathetic extensions were removed and the internal layout was reconfigured, with a new linking element added between the barn and farmhouse. The series of internal spaces that has been created is designed to retain the character of the historic listed property. Architect’s view The barn was sensitively restored and converted into an informal living space. Its timber-framed structure was refurbished and left exposed to celebrate the historic fabric of the barn and the craftsmanship of its original construction. A contemporary picture window with parts of the historic timber frame exposed within its reveals frames a view of the garden, as well as the barn’s unique structure. The extension, that links both barn and farmhouse, is deliberately contemporary in appearance to ensure that the historic buildings remain legible. It’s low-rise, built into the sloping garden and particularly lightweight in appearance. Floor-to-ceiling glass sits on a plinth of semi-knapped flint, rooting the intervention into the garden. A ribbon of black steel, with shallow peaks and troughs hovers above. The form of this ribbon draws inspiration from the distinctive black timber-clad gables that characterise the farmhouse and the surrounding outbuildings of the old farmstead. Internally the addition’s structure is exposed, much like the historic timber framed structure of the farmhouse and the barn. The interiors are tactile, defined by texture and pattern and inspired by the characteristics of the old farmstead. Miles Kelsey, associate, Will Gamble ArchitectsAdvertisement Client’s view We bought the farmhouse as a family home to move out of our two-bed flat in north London. Will visited the farmhouse with us whilst we were working through the purchase to understand what we were looking to do and went on to support us through each stage. The farmhouse was a combination of the original 16th century timber-framed building that had been added to with unattractive, unusable, and poorly planned extensions that meant the house was completely disconnected from the garden. Will and Miles transformed the whole house including moving the front door, converting an adjacent barn and building the modern extension as our kitchen and dining room that makes the best of the garden and views. The process that Will and Miles ran was a perfect balance of what we wanted, Sophie’s specific tastes and creativity combined with the benefit of the architects views and what they have done before. What really stood out to us was the way they worked with the council during the planning process so we got consent for almost everything we wanted, expressing their own views but ensuring we were always leading the process and the attention to detail during the build stage. Overall we are incredibly happy with what Will and Miles helped us create and the way they led us through the whole process.   Source:Will Gamble Architects Project data Location North Hertfordshire Start on site April 2023 Completion February 2025 Gross internal floor area 320m2 Form of contract or procurement route JCT MW Building Contract. Design-Bid-Build Architect Will Gamble Architects Client Private Structural engineer Axiom Structures Principal designer Will Gamble Architects Main contractor Elite Construction #will #gamble #architects #restores #extends
    WWW.ARCHITECTSJOURNAL.CO.UK
    Will Gamble Architects restores and extends Hertfordshire farmhouse
    The farmhouse, Flint Farm, in North Hertfordshire, was in poor condition with a number of unsympathetic additions that had altered its character over the years. Will Gamble Architects was appointed to restore and extend it for a young couple who wanted to transform it into their long-term family home and improve the house’s relationship with its garden and wider farmyard setting. While the original brief had been to replace an existing conservatory with a new extension, the practice encouraged the client to extend by integrating an adjacent barn into the envelope of the reworked house, changing the way the property was used.Advertisement Existing unsympathetic extensions were removed and the internal layout was reconfigured, with a new linking element added between the barn and farmhouse. The series of internal spaces that has been created is designed to retain the character of the historic listed property. Architect’s view The barn was sensitively restored and converted into an informal living space. Its timber-framed structure was refurbished and left exposed to celebrate the historic fabric of the barn and the craftsmanship of its original construction. A contemporary picture window with parts of the historic timber frame exposed within its reveals frames a view of the garden, as well as the barn’s unique structure. The extension, that links both barn and farmhouse, is deliberately contemporary in appearance to ensure that the historic buildings remain legible. It’s low-rise, built into the sloping garden and particularly lightweight in appearance. Floor-to-ceiling glass sits on a plinth of semi-knapped flint, rooting the intervention into the garden. A ribbon of black steel, with shallow peaks and troughs hovers above. The form of this ribbon draws inspiration from the distinctive black timber-clad gables that characterise the farmhouse and the surrounding outbuildings of the old farmstead. Internally the addition’s structure is exposed, much like the historic timber framed structure of the farmhouse and the barn. The interiors are tactile, defined by texture and pattern and inspired by the characteristics of the old farmstead. Miles Kelsey, associate, Will Gamble ArchitectsAdvertisement Client’s view We bought the farmhouse as a family home to move out of our two-bed flat in north London. Will visited the farmhouse with us whilst we were working through the purchase to understand what we were looking to do and went on to support us through each stage. The farmhouse was a combination of the original 16th century timber-framed building that had been added to with unattractive, unusable, and poorly planned extensions that meant the house was completely disconnected from the garden. Will and Miles transformed the whole house including moving the front door, converting an adjacent barn and building the modern extension as our kitchen and dining room that makes the best of the garden and views. The process that Will and Miles ran was a perfect balance of what we wanted, Sophie’s specific tastes and creativity combined with the benefit of the architects views and what they have done before. What really stood out to us was the way they worked with the council during the planning process so we got consent for almost everything we wanted, expressing their own views but ensuring we were always leading the process and the attention to detail during the build stage. Overall we are incredibly happy with what Will and Miles helped us create and the way they led us through the whole process.   Source:Will Gamble Architects Project data Location North Hertfordshire Start on site April 2023 Completion February 2025 Gross internal floor area 320m2 Form of contract or procurement route JCT MW Building Contract. Design-Bid-Build Architect Will Gamble Architects Client Private Structural engineer Axiom Structures Principal designer Will Gamble Architects Main contractor Elite Construction
    0 Commenti 0 condivisioni
  • An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment

    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22.

    If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster.
    Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral.
    Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet.

    At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites.
    Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement.
    I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa.

    Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own.
    And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research.
    There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms. 

    We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover.
    Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint. #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro. (Douglas Spencer reviewed it for AN.) Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas (which we aspired to be a part of, like the pretentious students we were). Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two students (Flávio Império joined us a little later) still in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent:  […] this extraordinary revival […] the rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses of (any) state or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética [this is ethics]. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    0 Commenti 0 condivisioni
  • Endless Blossom H20.5 Remake

    Endless Blossom H20.5 Remake

    Chris revisited his very first Tutorial here on Entagma!
    He will show you a much easier way of achieving this animation in Houdini 20.5. He uses some features of Houdini 20 in a very neat way to create a petal rig and shows you how to go from animation to vellum simulation in a very easy way.
    We hope you enjoy this one!

    Liked it? Take a second to support Christopher Kopic on Patreon!
    #endless #blossom #h205 #remake
    Endless Blossom H20.5 Remake
    Endless Blossom H20.5 Remake Chris revisited his very first Tutorial here on Entagma! He will show you a much easier way of achieving this animation in Houdini 20.5. He uses some features of Houdini 20 in a very neat way to create a petal rig and shows you how to go from animation to vellum simulation in a very easy way. We hope you enjoy this one! Liked it? Take a second to support Christopher Kopic on Patreon! #endless #blossom #h205 #remake
    ENTAGMA.COM
    Endless Blossom H20.5 Remake
    Endless Blossom H20.5 Remake Chris revisited his very first Tutorial here on Entagma! He will show you a much easier way of achieving this animation in Houdini 20.5. He uses some features of Houdini 20 in a very neat way to create a petal rig and shows you how to go from animation to vellum simulation in a very easy way. We hope you enjoy this one! Liked it? Take a second to support Christopher Kopic on Patreon!
    0 Commenti 0 condivisioni
Pagine in Evidenza