New Multi-Axis Tool from Virginia Tech Boosts Fiber-Reinforced 3D Printing
Researchers from the Department of Mechanical Engineering at Virginia Tech have introduced a continuous fiber reinforcementdeposition tool designed for multi-axis 3D printing, significantly enhancing mechanical performance in composite structures. Led by Kieran D. Beaumont, Joseph R. Kubalak, and Christopher B. Williams, and published in Springer Nature Link, the study demonstrates an 820% improvement in maximum load capacity compared to conventional planar short carbon fiber3D printing methods. This tool integrates three key functions: reliable fiber cutting and re-feeding, in situ fiber volume fraction control, and a slender collision volume to support complex multi-axis toolpaths.
The newly developed deposition tool addresses critical challenges in CFR additive manufacturing. It is capable of cutting and re-feeding continuous fibers during travel movements, a function required to create complex geometries without material tearing or print failure. In situ control of fiber volume fraction is also achieved by adjusting the polymer extrusion rate. A slender geometry minimizes collisions between the tool and the printed part during multi-axis movements.
The researchers designed the tool to co-extrude a thermoplastic polymer matrix with a continuous carbon fibertowpreg. This approach allowed reliable fiber re-feeding after each cut and enabled printing with variable fiber content within a single part. The tool’s slender collision volume supports increased range of motion for the robotic arm used in the experiments, allowing alignment of fibers with three-dimensional load paths in complex structures.
The six Degree-of-Freedom Robotic Arm printing a multi-axis geometry from a CFR polymer composite. Photo via Springer Nature Link.
Mechanical Testing Confirms Load-Bearing Improvements
Mechanical tests evaluated the impact of continuous fiber reinforcement on polylactic acidparts. In tensile tests, samples reinforced with continuous carbon fibers achieved a tensile strength of 190.76 MPa and a tensile modulus of 9.98 GPa in the fiber direction. These values compare to 60.31 MPa and 3.01 GPa for neat PLA, and 56.92 MPa and 4.30 GPa for parts containing short carbon fibers. Additional tests assessed intra-layer and inter-layer performance, revealing that the continuous fiber–reinforced material had reduced mechanical properties in these orientations. Compared to neat PLA, intra-layer tensile strength and modulus dropped by 66% and 63%, respectively, and inter-layer strength and modulus decreased by 86% and 60%.
Researchers printed curved tensile bar geometries using three methods to evaluate performance in parts with three-dimensional load paths: planar short carbon fiber–reinforced PLA, multi-axis short fiber–reinforced samples, and multi-axis continuous fiber–reinforced composites. The multi-axis short fiber–reinforced parts showed a 41.6% increase in maximum load compared to their planar counterparts. Meanwhile, multi-axis continuous fiber–reinforced parts absorbed loads 8.2 times higher than the planar short fiber–reinforced specimens. Scanning electron microscopyimages of fracture surfaces revealed fiber pull-out and limited fiber-matrix bonding, particularly in samples with continuous fibers.
Schematic illustration of common continuous fiber reinforcement–material extrusionmodalities: in situ impregnation, towpreg extrusion, and co-extrusion with towpreg. Photo via Springer Nature Link.
To verify the tool’s fiber cutting and re-feeding capability, the researchers printed a 100 × 150 × 3 mm rectangular plaque that required 426 cutting and re-feeding operations across six layers. The deposition tool achieved a 100% success rate, demonstrating reliable cutting and re-feeding without fiber clogging. This reliability is critical for manufacturing complex structures that require frequent travel movements between deposition paths.
In situ fiber volume fraction control was validated through printing a rectangular prism sample with varying polymer feed rates, road widths, and layer heights. The fiber volume fractions achieved in different sections of the part were 6.51%, 8.00%, and 9.86%, as measured by cross-sectional microscopy and image analysis. Although lower than some literature reports, the researchers attributed this to the specific combination of tool geometry, polymer-fiber interaction time, and print speed.
The tool uses Anisoprint’s CCF towpreg, a pre-impregnated continuous carbon fiber product with a fiber volume fraction of 57% and a diameter of 0.35 mm. 3DXTECH’s black PLA and SCF-PLA filaments were selected to ensure consistent matrix properties and avoid the influence of pigment variations on mechanical testing. The experiments were conducted using an ABB IRB 4600–40/2.55 robotic arm equipped with a tool changer for switching between the CFR-MEX deposition tool and a standard MEX tool with an elongated nozzle for planar prints.
Deposition Tool CAD and Assembly. Photo via Springer Nature Link.
Context Within Existing Research and Future Directions
Continuous fiber reinforcement in additive manufacturing has previously demonstrated significant improvements in part performance, with some studies reporting tensile strengths of up to 650 MPa for PLA composites reinforced with continuous carbon fibers. However, traditional three-axis printing methods restrict fiber orientation to planar directions, limiting these gains to within the XY-plane. Multi-axis 3D printing approaches have demonstrated improved load-bearing capacity in short-fiber reinforced parts. For example, multi-axis printed samples have shown failure loads several times higher than planar-printed counterparts in pressure cap and curved geometry applications.
Virginia Tech’s tool integrates multiple functionalities that previous tools in literature could not achieve simultaneously. It combines a polymer feeder based on a dual drive extruder, a fiber cutter and re-feeder assembly, and a co-extrusion hotend with adjustable interaction time for fiber-polymer bonding. A needle-like geometry and external pneumatic cooling pipes reduce the risk of collision with the printed part during multi-axis reorientation. Measured collision volume angles were 56.2° for the full tool and 41.6° for the hotend assembly.
Load-extension performance graphs for curved tensile bars. Photo via Springer Nature Link.
Despite these advances, the researchers identified challenges related to weak bonding between the fiber and the polymer matrix. SEM images showed limited impregnation of the polymer into the fiber towpreg, with the fiber-matrix interface remaining a key area for future work. The study highlights that optimizing fiber tow sizing and improving the fiber-polymer interaction time during printing could enhance inter-layer and intra-layer performance. The results also suggest that advanced toolpath planning algorithms could further leverage the tool’s ability to align fiber deposition along three-dimensional load paths, improving mechanical performance in functional parts.
The publication in Springer Nature Link documents the full design, validation experiments, and mechanical characterization of the CFR-MEX tool. The work adds to a growing body of research on multi-axis additive manufacturing, particularly in combining continuous fiber reinforcement with complex geometries.
Take the 3DPI Reader Survey — shape the future of AM reporting in under 5 minutes.
Ready to discover who won the 20243D Printing Industry Awards?
Subscribe to the 3D Printing Industry newsletter to stay updated with the latest news and insights.
Featured photo shows the six Degree-of-Freedom Robotic Arm printing a multi-axis geometry. Photo via Springer Nature Link.
Anyer Tenorio Lara
Anyer Tenorio Lara is an emerging tech journalist passionate about uncovering the latest advances in technology and innovation. With a sharp eye for detail and a talent for storytelling, Anyer has quickly made a name for himself in the tech community. Anyer's articles aim to make complex subjects accessible and engaging for a broad audience. In addition to his writing, Anyer enjoys participating in industry events and discussions, eager to learn and share knowledge in the dynamic world of technology.
#new #multiaxis #tool #virginia #tech
New Multi-Axis Tool from Virginia Tech Boosts Fiber-Reinforced 3D Printing
Researchers from the Department of Mechanical Engineering at Virginia Tech have introduced a continuous fiber reinforcementdeposition tool designed for multi-axis 3D printing, significantly enhancing mechanical performance in composite structures. Led by Kieran D. Beaumont, Joseph R. Kubalak, and Christopher B. Williams, and published in Springer Nature Link, the study demonstrates an 820% improvement in maximum load capacity compared to conventional planar short carbon fiber3D printing methods. This tool integrates three key functions: reliable fiber cutting and re-feeding, in situ fiber volume fraction control, and a slender collision volume to support complex multi-axis toolpaths.
The newly developed deposition tool addresses critical challenges in CFR additive manufacturing. It is capable of cutting and re-feeding continuous fibers during travel movements, a function required to create complex geometries without material tearing or print failure. In situ control of fiber volume fraction is also achieved by adjusting the polymer extrusion rate. A slender geometry minimizes collisions between the tool and the printed part during multi-axis movements.
The researchers designed the tool to co-extrude a thermoplastic polymer matrix with a continuous carbon fibertowpreg. This approach allowed reliable fiber re-feeding after each cut and enabled printing with variable fiber content within a single part. The tool’s slender collision volume supports increased range of motion for the robotic arm used in the experiments, allowing alignment of fibers with three-dimensional load paths in complex structures.
The six Degree-of-Freedom Robotic Arm printing a multi-axis geometry from a CFR polymer composite. Photo via Springer Nature Link.
Mechanical Testing Confirms Load-Bearing Improvements
Mechanical tests evaluated the impact of continuous fiber reinforcement on polylactic acidparts. In tensile tests, samples reinforced with continuous carbon fibers achieved a tensile strength of 190.76 MPa and a tensile modulus of 9.98 GPa in the fiber direction. These values compare to 60.31 MPa and 3.01 GPa for neat PLA, and 56.92 MPa and 4.30 GPa for parts containing short carbon fibers. Additional tests assessed intra-layer and inter-layer performance, revealing that the continuous fiber–reinforced material had reduced mechanical properties in these orientations. Compared to neat PLA, intra-layer tensile strength and modulus dropped by 66% and 63%, respectively, and inter-layer strength and modulus decreased by 86% and 60%.
Researchers printed curved tensile bar geometries using three methods to evaluate performance in parts with three-dimensional load paths: planar short carbon fiber–reinforced PLA, multi-axis short fiber–reinforced samples, and multi-axis continuous fiber–reinforced composites. The multi-axis short fiber–reinforced parts showed a 41.6% increase in maximum load compared to their planar counterparts. Meanwhile, multi-axis continuous fiber–reinforced parts absorbed loads 8.2 times higher than the planar short fiber–reinforced specimens. Scanning electron microscopyimages of fracture surfaces revealed fiber pull-out and limited fiber-matrix bonding, particularly in samples with continuous fibers.
Schematic illustration of common continuous fiber reinforcement–material extrusionmodalities: in situ impregnation, towpreg extrusion, and co-extrusion with towpreg. Photo via Springer Nature Link.
To verify the tool’s fiber cutting and re-feeding capability, the researchers printed a 100 × 150 × 3 mm rectangular plaque that required 426 cutting and re-feeding operations across six layers. The deposition tool achieved a 100% success rate, demonstrating reliable cutting and re-feeding without fiber clogging. This reliability is critical for manufacturing complex structures that require frequent travel movements between deposition paths.
In situ fiber volume fraction control was validated through printing a rectangular prism sample with varying polymer feed rates, road widths, and layer heights. The fiber volume fractions achieved in different sections of the part were 6.51%, 8.00%, and 9.86%, as measured by cross-sectional microscopy and image analysis. Although lower than some literature reports, the researchers attributed this to the specific combination of tool geometry, polymer-fiber interaction time, and print speed.
The tool uses Anisoprint’s CCF towpreg, a pre-impregnated continuous carbon fiber product with a fiber volume fraction of 57% and a diameter of 0.35 mm. 3DXTECH’s black PLA and SCF-PLA filaments were selected to ensure consistent matrix properties and avoid the influence of pigment variations on mechanical testing. The experiments were conducted using an ABB IRB 4600–40/2.55 robotic arm equipped with a tool changer for switching between the CFR-MEX deposition tool and a standard MEX tool with an elongated nozzle for planar prints.
Deposition Tool CAD and Assembly. Photo via Springer Nature Link.
Context Within Existing Research and Future Directions
Continuous fiber reinforcement in additive manufacturing has previously demonstrated significant improvements in part performance, with some studies reporting tensile strengths of up to 650 MPa for PLA composites reinforced with continuous carbon fibers. However, traditional three-axis printing methods restrict fiber orientation to planar directions, limiting these gains to within the XY-plane. Multi-axis 3D printing approaches have demonstrated improved load-bearing capacity in short-fiber reinforced parts. For example, multi-axis printed samples have shown failure loads several times higher than planar-printed counterparts in pressure cap and curved geometry applications.
Virginia Tech’s tool integrates multiple functionalities that previous tools in literature could not achieve simultaneously. It combines a polymer feeder based on a dual drive extruder, a fiber cutter and re-feeder assembly, and a co-extrusion hotend with adjustable interaction time for fiber-polymer bonding. A needle-like geometry and external pneumatic cooling pipes reduce the risk of collision with the printed part during multi-axis reorientation. Measured collision volume angles were 56.2° for the full tool and 41.6° for the hotend assembly.
Load-extension performance graphs for curved tensile bars. Photo via Springer Nature Link.
Despite these advances, the researchers identified challenges related to weak bonding between the fiber and the polymer matrix. SEM images showed limited impregnation of the polymer into the fiber towpreg, with the fiber-matrix interface remaining a key area for future work. The study highlights that optimizing fiber tow sizing and improving the fiber-polymer interaction time during printing could enhance inter-layer and intra-layer performance. The results also suggest that advanced toolpath planning algorithms could further leverage the tool’s ability to align fiber deposition along three-dimensional load paths, improving mechanical performance in functional parts.
The publication in Springer Nature Link documents the full design, validation experiments, and mechanical characterization of the CFR-MEX tool. The work adds to a growing body of research on multi-axis additive manufacturing, particularly in combining continuous fiber reinforcement with complex geometries.
Take the 3DPI Reader Survey — shape the future of AM reporting in under 5 minutes.
Ready to discover who won the 20243D Printing Industry Awards?
Subscribe to the 3D Printing Industry newsletter to stay updated with the latest news and insights.
Featured photo shows the six Degree-of-Freedom Robotic Arm printing a multi-axis geometry. Photo via Springer Nature Link.
Anyer Tenorio Lara
Anyer Tenorio Lara is an emerging tech journalist passionate about uncovering the latest advances in technology and innovation. With a sharp eye for detail and a talent for storytelling, Anyer has quickly made a name for himself in the tech community. Anyer's articles aim to make complex subjects accessible and engaging for a broad audience. In addition to his writing, Anyer enjoys participating in industry events and discussions, eager to learn and share knowledge in the dynamic world of technology.
#new #multiaxis #tool #virginia #tech

